Nanofluorophore Assisted Fluorescence Image-guided Cancer Surgery

Jian Xu¹*, David A. Kooby² and Shuming Nie³

¹Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University Baton Rouge, LA 70803, United States.

²Department of Surgery, Emory University, Atlanta, GA30322, United States.

³Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.

Correspondence: Jian Xu, Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University Baton Rouge, LA 70803, United States, E-mail: jianxu1@lsu.edu.

Received: 09 January 2018; Accepted: 05 February 2018


ABSTRACT

The major challenge of the current cancer surgery is the inability to remove all existing tumor. Surgeons rely on presurgical imaging, intraoperative visualization/palpation, and experience to optimize tumor removal. In cases of uncertainty, biopsies are taken and sent to the pathology lab, and the surgical team will wait for the result, which may take thirty minutes or longer to return. Here we introduce an intraoperative image-guiding system of identifying tissues in cancer surgery: a portable visible/near-infrared camera system was designed to help surgeons visualize cancerous tumors intraoperatively; a hand-held spectroscopic device, together with a nanofluorophore - indocyanine green as imaging contrast agent, was developed as a tool for intraoperative tissue diagnosis. With the spectral analysis of the nanofluorophore in the tissues of interest, our device can help to diagnose the tissue properties in the surgery: the cancerous tissues show at least two times stronger fluorescence than the normal tissues do. This method provides a quick (< 1 sec) diagnosis of cancer intraoperatively.

Keywords
Nanofluorophore, Image-guided surgery, Cancer, Spectroscopy.

Introduction

There is a major clinical need to develop sensitive intraoperative imaging to aid the complete surgical resection of cancer to improve the prognosis of cancer patients. According to US and UK statistics, cancer occurs to one in every two men and one in every three women in their lifetime [1]. Surgery provides dramatic survival advantages across the major types of human malignant tumors [2]. Surgical judgment combined with frozen section analysis is currently the best methods we have to limit leaving cancer behind at time of surgery [3-7]. Frozen section analysis is costly and inefficient [6-9]. Tissues can only be sampled in several points; the quality of microscopic slides produced by the frozen section procedure intraoperatively is inferior to that of formalin fixed paraffin embedded tissue procedure postoperatively, which takes even longer time (several hours to days) to get the diagnosis result [6-8,10], due to the non-optimal pathological preparation of the samples, the histological interpretation of the examination of these samples are limited [5,6,9,10].

The major challenge of the current cancer surgery is the inability to remove all existing tumor. Surgeons rely on presurgical imaging, intraoperative visualization/palpation, and experience to optimize tumor removal. In cases of uncertainty, biopsies are taken and sent to the pathology lab, and the surgical team will wait for the result, which may take thirty minutes or longer to return. Here we introduce an intraoperative image-guiding system of identifying tissues in cancer surgery: a portable visible/near-infrared camera system was designed to help surgeons visualize cancerous tumors intraoperatively; a hand-held spectroscopic device, together with a nanofluorophore - indocyanine green as imaging contrast agent, was developed as a tool for intraoperative tissue diagnosis. With the spectral analysis of the nanofluorophore in the tissues of interest, our device can help to diagnose the tissue properties in the surgery: the cancerous tissues show at least two times stronger fluorescence than the normal tissues do. This method provides a quick (< 1 sec) diagnosis of cancer intraoperatively.

Keywords
Nanofluorophore, Image-guided surgery, Cancer, Spectroscopy.

Introduction

There is a major clinical need to develop sensitive intraoperative imaging to aid the complete surgical resection of cancer to improve the prognosis of cancer patients. According to US and UK statistics, cancer occurs to one in every two men and one in every three women in their lifetime [1]. Surgery provides dramatic survival advantages across the major types of human malignant tumors [2]. Surgical judgment combined with frozen section analysis is currently the best methods we have to limit leaving cancer behind at time of surgery [3-7]. Frozen section analysis is costly and inefficient [6-9]. Tissues can only be sampled in several points; the quality of microscopic slides produced by the frozen section procedure intraoperatively is inferior to that of formalin fixed paraffin embedded tissue procedure postoperatively, which takes even longer time (several hours to days) to get the diagnosis result [6-8,10], due to the non-optimal pathological preparation of the samples, the histological interpretation of the examination of these samples are limited [5,6,9,10].
Methods
To address this challenge, we designed a near-infrared (NIR) spectroscopy system [11-13] (Figure 1), together with NIR nanometer-sized fluorophore, to help surgeons and pathologists identify cancers and tumor margins intraoperatively and expediently. In the NIR wavelength range between 650 nm and 950 nm, the light has lower absorption by blood, water and lipids [14-16]; as a result, the signal-to-noise ratio in the imaging is greatly enhanced, while the autofluorescence is minimized [14-16]. NIR signal is out of the visible (VIS) range of human eyes; thus, the surgical field will not be altered by the introduction of NIR imaging contrast agents [16,17], and tissue penetration of light may be up to 1-2 cm [4,14-16]. Indocyanine green (ICG), is a nanometer-sized NIR fluorophore approved by US Food and Drug Administration (FDA), for its safety [18,19] and efficacy in image guided surgery [14-16]. Once injected intravenously, ICG binds to the serum proteins and preferentially accumulate in the tumor interstitial space than in the normal tissues, mainly by the enhanced permeability and retention (EPR) effect. The hand-held spectroscopic device can thus detect the tumors, positive margins, negative margins, from their fluorescence contrast to the normal tissues (Figure 2). We also engineered a VIS/NIR camera system to help the surgeons directly visualize this fluorescence contrast effect on a computer monitor (Figure 1). These two systems can provide intraoperative tissue identification within seconds, which provides surgeons with prompt feedback on whether further resections are necessary.

Results
Using the spectroscopic device and the imaging systems, we have performed clinical trials on pancreatic cancers. The ex vivo studies on human cancer tissues were conducted according to the approved protocol by the Institutional Review Board at Emory University. The protocol was lead by Dr. Kooby; the clinical study was conducted at Emory Saint Joseph's Hospital. Our diagnosis was verified by postoperative histopathology analysis.

A representative surgical case is shown in Figure 2. This patient had distal pancreatic cancer and went through a distal pancreatectomy, as well as a partial splenectomy. Using the ICG fluorescence of the normal fat as a reference, we indeed found that the ICG fluorescence of the tumor is dramatically higher (more than 6 times), which indicated the ICG-protein complex preferential accumulation at the cancerous tissues than in the normal tissues, mainly considered to be caused by the EPR effect [4,19,20].

Conclusions
In summary, we developed an imaging system to guide the cancer surgery: a portable VIS/NIR camera system was designed to help the surgeons within 1 sec to visualize the cancer location; a hand-held spectroscopic device, together with ICG as imaging contrast agent, was developed to provide the complete quantitative information of ICG NIR spectrum.

References
12. Wu Y, Fu H, Quan H, et al. Modulation of Photocurrent in


