Chemical & Pharmaceutical Research

A New Aminoglycoside fr	om Hylocereus polyrnizus				
Chang C.T. ¹ , Liu C.M. ² , Yeh H.C. ³ , Li W.J. ⁴ , Li H.T. ⁵ , Liu S.L. ⁶ , and Chen C.Y. ^{3*}					
rtment of Clinical Microbiology Laboratory, Yuan's General tal, Kaohsiung, Taiwan.					
ol of Medicine, Yichun University, 576 XueFu Road, Yuanzhou ct Yichun 336000 China					
ol of Medical and Health Sciences, Fooyin University, siung 83102, Taiwan.	* Correspondence: Chung-Yi Chen., School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan.				
ol of Nursing, Fooyin University, Kaohsiung 83102, Taiwan.	Received: 19 May 2023; Accepted: 27 Jun 2023; Published: 03 Jul 2023				

Novy Amain a alive a side frame Uvi . .

¹Depa Hospi

 $^{2}School$ Distri

³Schoo Kaohs

⁴Schoo

⁵Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.

⁶Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou County, Taiwan.

Citation: Chang C.T, Liu C.M, Yeh H.C, et al. A New Aminoglycoside from *Hylocereus polyrhizus*. Chem Pharm Res. 2023; 5(2): 1-3.

ABSTRACT

A new aminoglycoside, pitayaoside A (2-((-5'-(aminomethoxy)-3',4'- dihydroxy-2'-(hydroxymethyl)tetrahydro-2 H-pyran-2'-yl)oxy)-6- (hydroxymethyl)tetrahydro-2 H-pyran-3,4,5-triol) (1) was isolated from the fruits of Hylocereus polyrhizus (pitaya). The structure was elucidated on the basis of physical and spectral analysis.

Keywords

Hylocereus polyrhizus, Aminoglycoside, Pitayaoside A, Pitaya.

Pitaya, belonging to the genus Hylocereus of the order Caryophyllales, also called dragon fruit, is a kind of tropical fruits around the world, and there are at last 3 varieties classified as Hylocereu polyrhizus (red pitaya), H. undatus (white pitaya) and H. megalanthus (yellow pitaya) [1]. The antioxidant capacity of red pitaya juice has been proved by in vitro and in vivo assay [1-3]. Many beneficial effects of red pitaya are reported in experimental animal studies, including improvement of dyslipidemia and blood glucose in high-carbohydrate or high-fat diet-induced metabolic syndrome rats [3-6], retardation of alcoholic liver disease progression in mice [7], attenuation of inflammation, and modulation of gut microbiota in obese mice [8]. In this paper, we report the isolation and structural elucidation of this new aminoglycoside (pitayaoside A (1)).

Pitayaoside A (1) was obtained as pale yellow crystals from CH₂OH. Its molecular formula was deduced as C₁₁H₂₅O₁₁N by HR-ESI-MS (*m*/*z* 394.1324 ([M+Na]⁺; calc. 394.1325)). The IR spectrum show absorptions for hydroxyl group (3400 cm⁻¹) and

Chem Pharm Res. 2023

amino group (3300 cm⁻¹). The ¹H NMR spectrum of **1** (Table 1) showed 8 oxymethine signals of two sets of glucopyranosyloxyls signals overlap between 3.69~5.66 ppm, four pair oxymethylenes $[\delta_{H} 3.91 (1H, dd, J = 12.0, 6.0 Hz, CH_{2}-7a)/4.04 (1H, dd, J = 12.0, CH_{2}-7a)$ 2.4 Hz, CH₂-7b), $\delta_{\rm H}$ 3.86 (2H, t, J = 12.4 Hz, CH₂-6'), $\delta_{\rm H}$ 3.93 (2H, m, CH₂-7') & $\delta_{\rm H}$ 3.55 (2H, s, CH₂-8')] corroborated by ¹³C NMR signals in Table 1. They were clarified and assigned based on COSY, NOESY, HSQC and HMBC spectra. The ¹H NMR signal at δ 5.66 (1H, d, J = 3.6 Hz, H-2) suggested the presence of one glucopyranosyl moiety. The HMBC correlations of H-2' to C-2 (Table 1) showed that the glucopyranosyloxyl was bonded to C-2 and 2' by an oxygen atom. By the ¹H-¹H COSY and HSQC data, two contiguous structural sequence was derived from correlations from H-2 (δ_H 5.66; δ_C 93.8) to H-3 (δ_H 4.11; $\delta_{\rm C}$ 74.9), from H-3 to H-4 ($\delta_{\rm H}$ 3.70; $\delta_{\rm C}$ 71.6), from H-4 to H-5 $(\delta_{\rm H} 4.45; \delta_{\rm C} 75.8)$, from H-5 to H-6 $(\delta_{\rm H} 4.46; \delta_{\rm C} 79.6)$, from H-6 to CH₂-7 ($\delta_{\rm H}$ 3.91/4.04; $\delta_{\rm C}$ 62.4), H-3' ($\delta_{\rm H}$ 4.19; $\delta_{\rm C}$ 74.8) to H-4' ($\delta_{\rm H}$ 3.69; $\delta_{\rm C}$ 73.4), from H-4' to H-5' ($\delta_{\rm H}$ 4.04; $\delta_{\rm C}$ 84.2), from H-5' to CH₂-6' ($\delta_{\rm H}$ 3.86; $\delta_{\rm C}$ 64.4), in accord with the presence of two spin systems corresponding to a CH(2)-CH(3)-CH(4)-CH(5)-CH(6)-CH₂(7)- and CH(3')-CH(4')- CH(5')-CH₂(6')- moiety. Two oxymethylene groups ($\delta_{\rm H}$ 3.55 (2H, s) and 3.93 (2H, m))

located at the position were determined by ¹³C-NMR signals at C-2' (δ 105.7) and C-5' (δ 84.2) and the HMBC correlations of H-7'/C-2', and H-8'/C-5'. The attachment of two oxymethylene groups at C-2' and C-5' was confirmed by the correlation between H-7'/H-3' and H-8'/H-5' in NOESY spectrum. The full assignment of **1** was further confirmed by COSY, HSQC, and HMBC spectra. The ¹H- and ¹³C-NMR (Table 1), COSY, NOESY, HSQC and HMBC (Table 1) experiments confirmed the structure as 2-((-5'-(aminomethoxy)-3',4'- dihydroxy-2'-(hydroxymethyl)-tetrahydro-2 *H*-pyran-2'-yl)oxy)-6-(hydroxymethyl)tetrahydro-2 *H*-pyran-3,4,5-triol, and designated pitayaoside A (**1**).

Experimental

General:

IR spectra were measured on a Hitachi 260-30 spectrophotometer. ¹H NMR (400 MHz) and 2D spectra were obtained on Varian-Mercury-400 spectrometers. Low-resolution ESI-MS spectra were obtained on an API 3000 (Applied Biosystems) and highresolution ESI-MS spectra on a Bruker Daltonics APEX II 30e spectrometer. The anion-exchange resin, di-ethyl-amino-ethyl (DEAE) sephacelTM (GE healthcare, USA) was used for column chromatography.

Plant Material:

Fresh red dragon fruits (*Hylocereus polyrhizus*) were obtained from a local market in Kaohsiung City, Daliao Dist., Taiwan, in June 2020. Plant material was identified by Dr. Su-Ling Liu (Experimental Forest College of Bioresources and Agriculture, National Taiwan University). A voucher specimen was deposited at the Department of Medical Technology, School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan.

Extraction and Isolation:

The primary isolation for pitayaoside (1) by two phase extraction was similar to the method of betalains purification [9]. Briefly, red dragon fruits were peeled, sliced and homogenized in a juicer (Vita Mix, VM0101B, USA) at maximum speed. The homogenate was centrifuged by a centrifuger (Hitech, CR21G, Japan) at 3500xg (30 min, 4°C), and then the supernatant was filtered by using qualitative filter paper No.2 (Advantec, Japan). The filtered 20 ml supernatant of juice was added 5 g of polyethylene glycol 6000 (PEG 6000; Merck, USA) and 2 g of ammonium sulfate $((NH_4)_2SO_4; Merck, USA)$. The mixtures were mixed thoroughly using a magnetic stirrer for 1 h, and then stood overnight at 4°C allowed to formation of aqueous two-phase partition, the bottom aqueous phase was discarded and the top phase was submitted to extraction with equal volume of chloroform. PEG 6000 was removed by an organic-aqueous extraction, which PEG 6000 was distributed to the organic (chloroform) phase (bottom phase). The top aqueous phase was harvested, and then was followed through a column packaged with DEAE resin (GE healthcare, USA). This column was washed with water by five volumes of column of water to remove other components. The fractions containing pitayaoside A (1) were gradually eluted by 0.001 N HCl and collected, and then were concentrated under reduced pressure by using a rotary evaporator (EYELA, N-1100S, Japan) at 60°C.

Finally, the purified pitayaoside A (1) were further lyophilized by a freeze dryers (Labconco, freezone plus 6, USA), and the powders of pitayaoside A (1) were stored at -20° C until use.

Fable 1. 13 C and 1 H HMR (Py-d ₅ and CD ₃ OD) data of pitayaoside (1)

C#	δ _c	н	mult., J (Hz)	HMBC ($^{1}H \rightarrow {}^{13}C$)
2	93.8	5.66	d, 3.6	C-3, C-4, C-2'
3	74.9	4.11	t, 9.2	C-2, C-4, C-5
4	71.6	3.70	t, 9.2	C-2, C-3, C-5, C-6
5	75.8	4.45	d, 12.0	C-3, C-4, C-6, C-7
6	79.6	4.46	t, 8.0	C-2, C-4, C-5, C-7
7a	62.4	3.91	dd, 12.0, 6.0	C-5, C-6
7b		4.04	dd, 12.0, 2.4	C-5, C-6
2'	105.7	-	-	-
3'	74.8	4.19	m	C-2', C-7', C-4', C-5'
4'	73.4	3.69	dd, 8.8, 1.2	C-2', C-3', C-5', C-6'
5'	84.2	4.04	m	C-3', C-4', C-6', C-8'
6'	64.4	3.86	t, 12.4	C-2', C-4', C-5'
7'	63.3	3.93	m	C-2', C-3'
8'	71.4	3.55	S	C-5'

Figure 1: Structure of pitayaoside (1).

Pitayaoside A (1):

Pale yellow crystals. mp 201-203 °C. $[\alpha]_{D}^{25} + 33.6^{\circ}$ (c 0.53, CH₃OH). IR (KBr, ν_{max} , cm⁻¹) ν_{max} : 3400 (OH), 3300 (NH₂) cm⁻¹. HR-EI-MS: *m/z* [M+Na]⁺ calcd for C₁₃H₂₅O₁₁N: 394.1325; found: 394.1324. ¹H and ¹³C NMR (400 MHz, Py-d₅ and CD₃OD, δ , ppm, J/Hz): see Table 1.

Acknowledgment

This investigation was supported by grants from the Fooyin University.

References

1. Suh DH, Lee S, Heo do Y, et al. Metabolite profiling of red and white pitayas (*Hylocereus polyrhizus* and *Hylocereus undatus*) for comparing betalain biosynthesis and antioxidant activity. J Agric Food Chem. 2014; 62: 8764-8771.

- Esquivel P, Stintzing FC, Carle R. Phenolic compound profiles and their corresponding antioxidant Capacity of purple pitaya (*Hylocereus sp.*) genotypes. Z Naturforsch C J Biosci. 2007; 62: 636-644.
- 3. Omidizadeh A, Yusof RM, Ismail A, et al. Cardioprotective compounds of red pitaya (*Hylocereus polyrhizus*) fruit. J Food Agric Environ. 2011; 9: 152-156.
- 4. Mohd AKR, Norhayati A., Rokiah M, et al. Hypocholesterolemic effect of red pitaya (*Hylocereus sp.*) on hypercholesterolemia induced rats. Int Food Res J. 2009; 16: 431-440.
- 5. Ramli NS, Brown L, Ismail P, et al. Effect of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet induced metabolic syndrome rats. BMC Complement Altern Med. 2014; 14: 189.

- 6. Ramli NS, Ismail P, Rahmat A. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, highfat diet-induced metabolic syndrome rats. BMC Complement Altern Med. 2016; 16: 1-10.
- 7. Yeh WJ, Tsai CC, Ko J, et al. *Hylocereus polyrhizus* peel extract retards alcoholic liver disease progression by modulating oxidative stress and inflammatory responses in C57BL/6 mice. Nutrients 2020; 12: 3884.
- Song H, Chu Q, Yan F, et al. Red pitaya betacyanins protects from diet-inducedobesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice. J Gastroenterol Hepatol. 2016; 31: 1462-1469.
- 9. Chethana S, Nayak CA, Raghavarao KSMS, Aqueous two phase extraction for purification and concentration of betalains. J Food Eng. 2007; 81: 679-687.

© 2023 Chang C.T, et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License