A New Aminoglycoside from Hylocereus polyrhizus

Chang C.T., Liu C.M., Yeh H.C., Li W.J., Li H.T., Liu S.L., and Chen C.Y.*

1Department of Clinical Microbiology Laboratory, Yuan’s General Hospital, Kaohsiung, Taiwan.
2School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, China
3School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan.
4School of Nursing, Fooyin University, Kaohsiung 83102, Taiwan.
5Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
6Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou County, Taiwan.

*Correspondence: Chung-Yi Chen., School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan.
Received: 19 May 2023; Accepted: 27 Jun 2023; Published: 03 Jul 2023

ABSTRACT

A new aminoglycoside, pitayaoside A (2-((5′-(aminomethoxy)-3′,4′-dihydroxy-2′-(hydroxymethyl)tetrahydro-2H-pyran-2′-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol) (1) was isolated from the fruits of Hylocereus polyrhizus (pitaya). The structure was elucidated on the basis of physical and spectral analysis.

Keywords

Hylocereus polyrhizus, Aminoglycoside, Pitayaoside A, Pitaya.

Pitaya, belonging to the genus Hylocereus of the order Caryophyllales, also called dragon fruit, is a kind of tropical fruits around the world, and there are at last 3 varieties classified as Hylocereus polyrhizus (red pitaya), H. undatus (white pitaya) and H. megalanthus (yellow pitaya) [1]. The antioxidant capacity of red pitaya juice has been proved by in vitro and in vivo assay [1-3]. Many beneficial effects of red pitaya are reported in experimental animal studies, including improvement of dyslipidemia and blood glucose in high-carbohydrate or high-fat diet-induced metabolic syndrome rats [3-6], retardation of alcoholic liver disease progression in mice [7], attenuation of inflammation, and modulation of gut microbiota in obese mice [8]. In this paper, we report the isolation and structural elucidation of this new aminoglycoside (pitayaoside A (1)).

Pitayaoside A (1) was obtained as pale yellow crystals from CH$_3$OH. Its molecular formula was deduced as C$_{13}$H$_{25}$O$_{11}$N by HR-ESI-MS (m/z 394.1324 ([M+Na]$^+$; calc. 394.1325)). The IR spectrum show absorptions for hydroxyl group (3400 cm$^{-1}$) and amino group (3300 cm$^{-1}$). The 1H NMR spectrum of 1 (Table 1) showed 8 oxymethine signals of two sets of glucopyranosylxyls signals overlap between 3.69–5.66 ppm, four pair oxymethylene (δ^1_H 3.55 (2H, s) and 3.93 (2H, m)) \(\delta^1_C\) 62.4), H-3' (δ^1_H 4.45; δ^1_C 75.8) to H-3 (δ1_H 4.45; δ1_C 75.8), from H-5 to H-6 (δ1_H 4.45; δ1_C 79.6), from H-6 to CH$_2$-7 (δ1_H 3.91/4.04; δ1_C 62.4), H-3' (δ1_H 4.19; δ1_C 74.8) to H-4' (δ1_H 3.69; δ1_C 73.4), from H-4' to H-5' (δ1_H 4.04; δ1_C 84.2), from H-5' to CH$_2$-6' (δ1_H 3.86; δ1_C 64.4), in accord with the presence of two spin systems corresponding to a CH(2)–CH(3)–CH(4)–CH(5)–CH(6)–CH$_2$(7)– and CH(3′)–CH(4′)–CH(5′)–CH$_2$(6′)– moiety. Two oxymethylene groups (δ1_H 3.55 (2H, s) and 3.93 (2H, m))...
located at the position were determined by 13C-NMR signals at C-2' (δ 105.7) and C-5' (δ 84.2) and the HMBC correlations of H-7'/C-2', and H-8'/C-5'. The attachment of two oxymethylene groups at C-2' and C-5' was confirmed by the correlation between H-7'/H-3' and H-8'/H-5' in NOESY spectrum. The full assignment of 1 was further confirmed by COSY, HSQC, and HMBC spectra. The 1H- and 13C-NMR (Table 1), COSY, NOESY, HSQC and HMBC (Table 1) experiments confirmed the structure as 2-(5′-(aminomethoxy)-3′,4′-dihydroxy-2′-(hydroxymethyl)tetrahydro-2 H-pyran-2′-yl)oxy)-6-(hydroxymethyl)tetrahydro-2 H-pyran-3,4,5-triol, and designated pitayaoside A (1).

Experimental

General:
IR spectra were measured on a Hitachi 260-30 spectrophotometer. 1H NMR (400 MHz) and 2D spectra were obtained on Varian-Mercury-400 spectrometers. Low-resolution ESI-MS spectra were obtained on an API 3000 (Applied Biosystems) and high-resolution ESI-MS spectra on a Bruker Daltonics APEX II 30e spectrometer. The anion-exchange resin, di-ethyl-amino-ethyl (DEAE) sephacel™ (GE healthcare, USA) was used for column chromatography.

Plant Material:
Fresh red dragon fruits (Hylocereus polyrhizus) were obtained from a local market in Kaohsiung City, Daliao Dist., Taiwan, in June 2020. Plant material was identified by Dr. Su-Ling Liu (Experimental Forest College of Bioreources and Agriculture, National Taiwan University). A voucher specimen was deposited at the Department of Medical Technology, School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan.

Extraction and Isolation:
The primary isolation for pitayaoside (1) by two phase extraction was similar to the method of betalains purification [9]. Briefly, red dragon fruits were peeled, sliced and homogenized in a juicer (Vita Mix, VM0101B, USA) at maximum speed. The homogenate was centrifuged by a centrifuge (Hitech, CR21G, Japan) at 3500xg (30 min, 4°C), and then the supernatant was filtered by a qualitative filter paper No.2 (Advantec, Japan). The filtered 20 ml supernatant of juice was added 5 g of polyethylene glycol 6000 (PEG 6000; Merck, USA) and 2 g of ammonium sulfate ((NH4)2SO4; Merck, USA). The mixtures were stirred using a magnetic stirrer for 1 h, and then stood overnight at 4°C allowed to formation of aqueous two-phase partition, the bottom aqueous phase was discarded and the top phase was submitted to extraction with equal volume of chloroform. PEG 6000 was removed by an organic–aqueous extraction, which PEG 6000 was allowed to formation of aqueous phase was discarded and the top phase was submitted through a column packaged with DEAE resin (GE healthcare, USA). This column was washed with water by five volumes of column of water to remove other components. The fractions containing pitayaoside A (1) were gradually eluted by 0.001 N HCl and collected, and then were concentrated under reduced pressure by using a rotary evaporator (EYELA, N-1100S, Japan) at 60°C. Finally, the purified pitayaoside A (1) were further lyophilized by a freeze dryers (Labconco, freezone plus 6, USA), and the powders of pitayaoside A (1) were stored at -20°C until use.

Table 1. 13C and 1H HMR (Py-d$_5$ and CD$_3$OD) data of pitayaoside (1).

<table>
<thead>
<tr>
<th>C#</th>
<th>δ$_c$</th>
<th>n</th>
<th>mult., J (Hz)</th>
<th>HMBC (H → 13C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>93.8</td>
<td>5.66</td>
<td>d, 3.6</td>
<td>C-3, C-4, C-2'</td>
</tr>
<tr>
<td>3</td>
<td>74.9</td>
<td>4.11</td>
<td>t, 9.2</td>
<td>C-2, C-4, C-5</td>
</tr>
<tr>
<td>4</td>
<td>71.6</td>
<td>3.70</td>
<td>t, 9.2</td>
<td>C-2, C-3, C-5, C-6</td>
</tr>
<tr>
<td>5</td>
<td>74.5</td>
<td>4.45</td>
<td>d, 12.0</td>
<td>C-3, C-4, C-6, C-7</td>
</tr>
<tr>
<td>6</td>
<td>79.6</td>
<td>4.46</td>
<td>t, 8.0</td>
<td>C-2, C-4, C-5, C-7</td>
</tr>
<tr>
<td>7a</td>
<td>62.4</td>
<td>3.91</td>
<td>dd, 12.0, 60</td>
<td>C-5, C-6</td>
</tr>
<tr>
<td>7b</td>
<td></td>
<td>4.04</td>
<td>dd, 12.0, 2.4</td>
<td>C-5, C-6</td>
</tr>
<tr>
<td>2'</td>
<td>105.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3'</td>
<td>74.8</td>
<td>4.19</td>
<td>m</td>
<td>C-2', C-7, C-4', C-5'</td>
</tr>
<tr>
<td>4'</td>
<td>73.4</td>
<td>3.69</td>
<td>dd, 8.8, 1.2</td>
<td>C-2', C-3', C-5', C-6'</td>
</tr>
<tr>
<td>5'</td>
<td>84.2</td>
<td>4.04</td>
<td>m</td>
<td>C-3', C-4', C-6', C-8'</td>
</tr>
<tr>
<td>6'</td>
<td>64.4</td>
<td>3.86</td>
<td>t, 12.4</td>
<td>C-2', C-4', C-5'</td>
</tr>
<tr>
<td>7'</td>
<td>63.3</td>
<td>3.93</td>
<td>m</td>
<td>C-2', C-3'</td>
</tr>
<tr>
<td>8'</td>
<td>71.4</td>
<td>3.55</td>
<td>s</td>
<td>C-5'</td>
</tr>
</tbody>
</table>

Figure 1: Structure of pitayaoside (1).

Pitayaoside A (1):
Pale yellow crystals. mp 201-203 °C. [α]$_D^{25}$ + 33.6° (c 0.53, CH$_3$OH). IR (KBr, v$_{max}$ cm$^{-1}$) v$_{max}$: 3400 (OH), 3300 (NH$_2$) cm$^{-1}$. HR-EL-MS: m/z [M+Na]$^+$ calcd for C$_{19}$H$_{24}$O$_6$N: 394.1325; found: 394.1324. 1H and 13C NMR (400 MHz, Py-d$_5$ and CD$_3$OD, δ, ppm, J/Hz): see Table 1.

Acknowledgment
This investigation was supported by grants from the Fooyin University.

References

© 2023 Chang C.T, et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License