A New Tetrahydrofuran of Cinnamomum Burmannii

Yang T.L1, Yeh H.C2, Li H.T3, Liu S.L4* and Chen C.Y2*

1Department of Clinical Microbiology Laboratory, Yuan’s General Hospital, Kaohsiung, Taiwan.
2School of Medical and Health Sciences, Fooyin University, 83102, Kaohsiung, Taiwan.
3Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
4Experimental Forest College of Bioresources and Agriculture, National Taiwan University, No.12, Sec. 1, Qianshan Rd., Zhushan Township, Nantou County, Taiwan (R.O.C.)

*Correspondence: Chen C. Y., School of Medical and Health Sciences, Fooyin University, 83102, Kaohsiung, Taiwan.
Liu S L, Experimental Forest College of Bioresources and Agriculture, National Taiwan University, No.12, Sec. 1, Qianshan Rd., Zhushan Township, Nantou County, Taiwan (R.O.C.).

Received: 05 Jan 2022; Accepted: 03 Feb 2022; Published: 08 Feb 2022

ABSTRACT

A new tetrahydrofuran, burmafuranic acid (I) was isolated from the mushroom supreme by Cinnamomum burmannii (Nees & T. Nees) Blume (Lauraceae). The structure of the new tetrahydrofuran was elucidated by chemical and physical evidence.

Keywords
Cinnamomum burmannii, Lauraceae, Tetrahydrofuran.

Introduction
Cinnamomum burmannii (Nees & T. Nees) Blume (Lauraceae) is a source of Indonesia cinnamon, and is widely used as a spice in Indonesia [1]. The chemical constituents of the roots of this plant have not yet been reported. Recently, we reported a new amide, a novel homosesquiterpenoid, along with five known amides from the stems of \textit{C. burmannii} [2,3]. Previously, we isolated 20 compounds, including one apocarotenoid, one triterpenoid, one coumarin, two steroids, and four benzoids from the leaves of this plant [4,5].

In the course of screening for biologically and chemically novel agents from Formosan plants in the family Lauraceae [6-83], \textit{C. burmannii} was chosen for further phytochemical investigation. In this paper, we report the isolation and structural elucidation of this new tetrahydrofuran.

Burmafuranic acid (I), obtained as a white powder, established by the molecular formula C_{14}H_{18}O_{7} by HR-EIMS at m/z [M + Na]+ 321.0947 (calcd for C_{14}H_{18}O_{7}Na, 321.0950). Two IR bands at \nu_{\text{max}} 3400 and 1650 cm-1 one signal appearing at \delta 178.0 in the 13C NMR spectrum suggested that hydroxyl groups and a carbonyl group might be present. The 1H NMR spectrum revealed an AX pattern at \delta 6.54 (1H, d, J = 1.8) and 6.49 (1H, d, J = 1.8) for H-2’ and H-6’, three methine protons at \delta 3.12 (1H, m), 3.42 (1H, td, J = 9.6, 4.2) and 4.61 (1H, d, J = 6.6) for H-4, H-3 and H-5, two methylene protons at \delta 4.21 (1H, dd, J = 9.6, 4.2)/4.34 (1H, m) and 3.65 (1H, m)/4.51 (1H, dd, J = 9.6, 6.6) for H-2 and H-6 and two methyl protons at \delta 3.87 (3H, s, OCH\textsubscript{3}) and 3.89 (3H, s, OCH\textsubscript{3}). 13C NMR and DEPT experiments on I showed 14 resonance lines consisting of two methyls, two methylenes, five methines and five quaternary carbons (including one carbonyl signal at \delta 178.0).

The mass, UV, IR and 1H NMR data suggested that I is a type of phenolic tetrahydrofuran lignan and that the position of methoxyl and hydroxyl groups should be located on the skeleton. The sequential correlations of the NOESY spectrum were successfully established as shown in Figure 1. Thus, the structure of this compound was named to be burmafuranic acid (I), which was further confirmed by HMBC experiments (Table 1).

Table 1: NMR data of I in CDCl\textsubscript{3} (\delta in ppm, J in Hz, 600 MHz for 1H NMR, and 150 MHz for 13C NMR).

<table>
<thead>
<tr>
<th>Position</th>
<th>13C (\delta)</th>
<th>1H (\delta)</th>
<th>mult., J (Hz)</th>
<th>HMBC (1H \rightarrow 13C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70.2</td>
<td>4.21</td>
<td>dd, 9.6, 4.2</td>
<td>C-3</td>
</tr>
<tr>
<td>3</td>
<td>46.0</td>
<td>3.42</td>
<td>td, 9.6, 4.2</td>
<td>C-3, C-4, C-7</td>
</tr>
<tr>
<td>4</td>
<td>48.2</td>
<td>3.12</td>
<td>m</td>
<td>C-3, C-5, C-6</td>
</tr>
<tr>
<td>5</td>
<td>86.0</td>
<td>4.61</td>
<td>d, 6.6</td>
<td>C-4, C-11</td>
</tr>
<tr>
<td>6</td>
<td>70.1</td>
<td>3.65</td>
<td>m</td>
<td>dd, 9.6, 6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The stems (2.12 kg) of Cinnamomum burmannii (Nees & T. Nees) Blume were collected from Nantou County, Taiwan, in June 2020. Plant material was identified by Dr. Su-Ling Liu (Experimental Forest College of Bioresources and Agriculture of the National Taiwan University). A voucher specimen was deposited at the Department of Medical Biology, National Taiwan University. This research is sponsored by the project (110A01) from Experimental Forest College of Bioresources and Agriculture of the National Taiwan University.

Extraction and Isolation

The stems (2.12 kg) of C. burmannii were extracted repeatedly with MeOH (3 L x 3) at room temperature for 24-48 hrs. The MeOH extract was dried and evaporated to leave a viscous residue (37.6 g). The residue was placed on a silica gel column (1.5 kg, 70−230 mesh) and eluted with CHCl₃ gradually enriched with MeOH to afford 10 fractions. Part of fraction 2 (11.6 g) was subjected to silica gel chromatography (343 g, 70−230 mesh), by eluting with n-hexane-acetone (100:1), enriched gradually with acetone, to furnish four fractions (2-1−2-4). Fraction 2-2 (4.5 g) was further purified on a silica gel column using n-hexane/acetone mixtures to obtain burmafuranic acid (1) (4 mg).

Burmafuranic acid (1)

White powder. [α]D₂⁰ +35.4 (c 0.45, CHCl₃). UV λmax (MeCN, log ε): 210 (4.11), 235 (4.16), 274 (4.04) nm. IR (νmax cm⁻¹): 3400 (OH), 1650 (C=O), 1500. ESI-MS m/z 321 [M+Na]⁺; HR-ESI-MS m/z 321.0947 [M+Na]⁺ (calcd for C₁₂H₁₈O₅Na, 321.0950). ¹H and ¹³C NMR data, see Table 1.

Acknowledgment

This research is sponsored by the project (110A01) from Experimental Forest College of Bioresources and Agriculture of the National Taiwan University.

References

