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ABSTRACT
Artificial intelligence (AI) is an emerging continuous equipment-based power that is initiating to spread throughout 
to all aspects of our lifestyles for digital revolution even in medical diagnosis, management of the disease AI 
application in ophthalmology can help in screening, diagnosing, staging, and providing best possible management 
planning of various eye diseases especially for sight-threatening eye conditions. This paper demonstrates a review 
of the art of AI in the ophthalmic field and focusing on the applications of AI for the diagnosis and treatment 
of ophthalmic diseases including cataract, glaucoma, diabetic retinopathy, age-related macular degeneration, 
retinopathy of prematurity, and future AI applications with image enhancement in Ophthalmology. Diabetic 
retinopathy is occurring due to damage of retinal blood. Advanced diabetic retinopathy can cause blindness. So, 
early detection and management of diabetic retinopathy is crucial to prevent vision loss. AI based technology is 
playing a role as an auxiliary assistant in screening and diagnostic support for ophthalmologist.
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Introduction
With the advent of technology, our life expectancy has increased 
significantly. With this advantage, we are experiencing much 
more diseases related to the ageing process. Eye diseases are also 
included in these. Early detection and appropriate treatment of 
these eye diseases are essential to prevent vision loss and promote 
living quality. Conventional diagnosis methods are tremendously 
dependent on physicians' professional experience and knowledge, 
which leads to a high misdiagnosis rate and a colossal waste of 
medical data and cost.

A study published in 2014 estimated that diagnostic errors 
affect at least 5% of US adults (12 million people) per year [1]. 
More recently, a systematic review and meta-analysis reported 
that the rate of diagnostic errors causing adverse events among 
hospitalized patients was 0.7% [2]. Furthermore, diagnostic error 
is the most critical reason for malpractice litigation in the United 
States, accounting for 31% of malpractice lawsuits in 2017 [3]. 
Creating artificial intelligence (AI) programs to identify and 
analyze diagnostic errors could be an essential step in addressing 
this problem [4].

AI has integrated with the Ophthalmology to potentially 
revolutionize the current disease diagnosis and generate a 
significant clinical impact. It holds the potential to improve patient 
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and practitioner outcomes, reduce costs by preventing errors and 
unnecessary procedures, and provide population-wide health 
improvements.
 
Artificial intelligence is the fourth industrial revolution in 
humanity's history [5]. It was proposed in 1956 by Dartmouth 
scholar John McCarthy; AI "refers to hardware or software 
that exhibits behaviour which appears intelligent" [6]. The 
concept suggests that a machine can think and stimulate human 
intelligence through behaviour such as learning, interpreting and 
communicating. This concept is referred to as artificial intelligence. 

Artificial Intelligence is a vast field of study encompassing many 
techniques that allow machines to display ever more intelligent 
behaviour. Subsets of AI are Machine learning (ML) and Deep 
learning (DL). 

ML, which occurred in 1980, refers to a group of mathematical 
algorithms that learn from experience (data) by mimicking human 
learning behaviour to perform new tasks. ML can fit complex data 
sets to extract new knowledge, imitate complex behaviour, and 
predict and classify based on preliminary data.

Supervised ML (Figure 1) is an approach that requires three 
labelled data set used for training, validation, and testing. All are 
defined and labelled by domain experts. Unsupervised ML IS 
NOT the same level of performance as supervised ML.

Figure 1: Supervised ML Process. It requires 3 labelled datasets that are 
used for training, validation, and testing.

Deep learning (DL), which occurred in the 2000s, is a burgeoning 
technology of ML and has revolutionized the globe of AI (Table 
1). These technologies help in several dimensions of modern 
society, such as objects' recognition in images, real-time languages 
translation, device manipulation via speech etc.

This paper discusses the applications of AI in the ophthalmic 
field and review the art of AI for the diagnosis and treatment plan 
of ophthalmic diseases including cataract, glaucoma, diabetic 
retinopathy, age-related macular degeneration, retinopathy of 
prematurity, and future AI modifications and utilization.

Building AI Models 
Multiple types of imaging modalities have been used in AI 
diagnosis, such as radiology images (Computed tomography scan, 
Magnetic resonance Images, PET-CT) [7], electrophysiological 
signal records (electrocardiograph [8] and electroencephalogram 
[9]), visible wavelength images (dermoscopy images and biopsy 
images), ultrasound images [10], angiography images [11] are 
some of the imaging modalities used in AI diagnosis.

Developing an AI model includes preprocessing image data, 
training, validating, testing the model, and evaluating the trained 
model's performance. 

Data Pre-processing
To improve AI prediction efficiency, raw data need to be 
preprocessed. The preprocessed work includes the following 
[12,13]: (1) noise reduction. Denoising can promote the quality of 
the data set and optimize the learning curve. (2) Data integration 
and standardization: data collected from different sources should 
be integrated and adjusted to a standard scale. (3) Selecting features 
and extraction: the most usual features are selected and extracted 
to improve the learning performances. 

Training, Validation, and Test
To attain a standard performance, the data set is frequently divided 
into two independent subsets; one is for modelling, and the other 
one is for testing. In most cases, the data in the previous sets will 
be divided into training and validation sets. The training set is used 
to pertinent the appropriate parameters of a model. The validation 
set is used to evaluate how well the model has been instructed and 
tune the parameters or to assess the performances of the prediction 
algorithms set.

Cross-validation methods have been widely used to evaluate and 
optimize algorithms [14]. The most adopted cross-validation is 
"K-fold cross-validation." 

Evaluation
The receiver operating characteristic curve (ROC) is a valuable 
tool to emboss algorithms' execution. It is created by plotting the 
distinguish probability for each algorithm across a continuum of 
the threshold.

Table 1: Artificial Intelligence techniques.
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AI Application in Ophthalmology 
Cataract
A cataract is a disease when the lens becomes opacified, usually 
due to ageing or other causes in young people. Early detection and 
management can help gain the visual quality of cataract patients 
and improve their lifestyles. ML algorithms like RF and SVM 
have been applied to diagnose and grade cataracts using fundus 
photographs and visible wavelength eye images [5-17]. The risk 
prediction model for the posterior capsule opacification (PCO) 
after phacoemulsification has also been built [18].

Senile cataracts can be diagnosed using DL models [19], but 
a more impressive work is about pediatric cataracts. Long 
et al. demonstrated a CNN-based computer-aided diagnosis 
(CAD) framework to grade pediatric cataracts. A multihospital 
collaboration has been established where a cloud-based platform 
integrated AI agent has been used. These proposed methods are 
serviceable for improving cataract screening for a large population.

Glaucoma
Glaucoma is a structural and functional disease of the optic nerve 
characterized by excavation and erosion of the neuroretinal rim 
that clinically manifests by increased optic nerve head (ONH) 
cupping. Glaucoma patient suffers from high intraocular pressure, 
damage to the optic nerve head (ONH), defect in the retina nerve 
fibre layer (RNFL), and gradual vision loss. 

ONH area varies fivefold, but virtually no cup to disc ratio (CDR) 
defines pathological cupping, hampering disease detection [20]. 
Li et al. [21] and Ting et al. [22] trained computer algorithms 
to detect the glaucoma-like disc, defined as a vertical cup-disc 
ratio (CDR) of 0.7 and 0.8. Investigator has also applied machine 
learning technique to distinguish glaucomatous nerve fibre layer 
damage from regular scans on wide-angle OCTs (9×12 mm) [23].

Spectrum domain OCT (SD-OCT) is another critical imaging 
modality to evaluate cup-disc ratio (CDR). After locating the 
coarse disc margin by a spatial correlation smoothness constraint, 
an SVM model is trained to find a patch on OCT images to 
determine a reference plane to evaluate the CDR. The proposed 
algorithm can help achieve high segmentation accuracy and a low 
CDR evaluation error [24].

In glaucoma, retinal ganglion cell axons atrophy occurs in a 
confined space within the ONH, and ophthalmologists typically 
depend on low dimensional psychophysical data to delineate 
the functional consequences of that damage. The outputs from 
these tests typically support reliability parameters, age-matched 
normative comparisons, and global summary indices, but a more 
detailed analysis of this operational data is lacking. Elze et al. [25] 
developed an unsupervised computer program to analyze visual 
field (VF) that recognizes clinically relevant patterns of VF loss 
and assigns a weighting coefficient. This method has proven 
helpful in detecting early VF loss from glaucoma [26]. Yousefi 
et al. [27] developed a machine-based algorithm that detected VF 

progression earlier than these conventional strategies.

Kazemian et al. [28] developed a clinical forecasting tool that 
uses tonometric and VF data to project disease courses at different 
target IOPs. Further purification of this tool that integrates other 
ophthalmic and non-ophthalmic data would be helpful to develop 
target IOPs and the best strategies to achieve them on a case-by-
case basis.

Diabetic retinopathy
Worldwide, 600 million people will have diabetes by 2040, with 
a third having diabetic retinopathy (DR) [29]. DR, a chronic 
diabetic complication of diabetes, is a vasculopathy that can lead 
to irreversible blindness [30].

Coupled with timely referral and treatment, screening for diabetic 
retinopathy (DR) is a globally accepted strategy to prevent 
blindness. DR screening can be performed by different ophthalmic 
professionals and under different methods. In the few years, DL 
has revolutionized the diagnostic performance in detecting DR 
[31].

The specific abnormalities such as macular oedema [32-35], 
exudates [32], cotton-wool [33], microaneurysms [36-38], and 
neovascularization on optic disk [39] can be detected by CML. 
Based on these hallmarks, the early diagnosis of DR in an automated 
fashion has been explored [40]. Furthermore, a system focused on 
timely and effectively proliferative DR (PDR) detection has been 
developed to ensure immediate attention and intervention [41,42].

Gulshan et al. were the first to describe the application of DL for 
DR identification. They reported that the method based on DL 
techniques had very high sensitivity and specificity [43].

Several DL models with impressive performance have been 
developed for the automated detection of DR [44-46]. Abràmoff 
et al. [45] showed that a DL system was applicable to evaluate 
an area under the receiver operating characteristic curve (AUC) 
of 0.980, with sensitivity (96.7%) and specificity (87.0%), for the 
delineate of referable DR (defined as moderate non-proliferative 
DR or worse, with or without diabetic macular oedema (DMO) on 
Messidor-2 data set. Garcia and Leng [44] showed an AUC of 0.97 
using cross-validation on the same data set and 0.94 and 0.95 in 
two independent test sets (Messidor 2 and E-Ophtha). 
Some studies applied DL to automatically stage DR through fundus 
images [45-48], making up for the deficiency of Gulshan's study 
that they only studied referable DR. Still, there is no comparable 
data on vision-threatening DR or other DR stages.

Although several groups have demonstrated promising results 
using DL systems on available data sets, the DL systems were not 
tested in real-world DR screening programmes. 

Ting et al. [22] showed a clinically acceptable diagnostic 
performance of a DL system, developed, and tested using the 
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Singapore Integrated Diabetic Retinopathy Programme over five 
years and ten external data sets recruited from 6 different countries. 
The DL system was reported to have AUC, sensitivity, and specificity 
of 0.936, 90.5% and 91.6% in detecting referable DR.

Age-related Macular Degeneration 
AMD is a major cause of irreversible vision loss in older people 
globally. The Age-Related Eye Disease Study (AREDS) classifies 
AMD stages into none, early, intermediate, and late AMD using 
drusen, pseudodrusen, fluid or atrophy [49,50]. With the ageing 
population, there is an urgent clinical need to have a robust DL 
system to screen these patients.

The goal of using ML and DL systems is to automatically identify 
AMD-related lesions to improve AMD diagnosis and treatment. 
Drusen regression, an anatomic endpoint of moderate AMD 
and the onset of neovascular AMD, can be evaluated through 
the specifically designed, fully automated, ML-based classifier. 
Detection of drusen [51,52] fluid [52,53] reticular pseudo drusen 
[54] and geographic atrophy [55] from fundus images and SD-
OCT using ML 54 has been studied. The accuracy is usually over 
80% [51,54-56] and the agreement between the models and retina 
specialists can reach 90%.

Ting et al. [22] reported a clinically acceptable DL system 
diagnostic performance in detecting referable AMD. This DL 
system was trained and tested using 108558 retinal photographic 
images from 38 189 patients. Fovea-centred images without 
macula segmentation were studied in this study. For the other two 
studies [57-59], DL systems were constructed using the AREDS 
data set, with many referable AMD (intermediate AMD or worse).

Using fivefold cross-validation, Burlina et al. [58] reported 
diagnostic accuracy from 88.4% to 91.6%, with an AUC of 0.94 
and 0.96. Unlike, the authors pre-segmented the macula region 
before training and testing, with an 80/20 split between the testing 
and training in every fold [22]. Both AlexNet and OverFeat have 
been used in the DL architecture, with AlexNet yielding better 
performance. Utilizing the same AREDS data set, Grassmann et 
al. (Table 2) [59] reported a sensitivity of 84.2% in detecting any 
AMD. To train different models, the authors used six convolutional 
neural networks in this study—AlexNet, GoogleNet, VGG, 
Inception-V3, ResNet and Inception-ResNet-V2.

Bogunovic et al. build a data-driven interpretable predictive 
model to predict the progression risk in intermediate AMD [52]. 
Automated image analysis steps were applied for identifying 
and characterizing each drusen at baseline, and their progression 
was monitored at a follow-up visit. For this characterization and 
analysis, they developed an ML method based on survival analysis 
to delineate a risk score and speculate the incoming regression of 
individual drusen. 

Using ML to prognosticate anti-vascular endothelial growth factor 
(anti-VEGF) requirements in eye diseases such as neovascular 

AMD and PDR can alleviate patients' economic burden and 
facilitate resource management. Bogunovic et al. used OCT images 
of patients with low or high anti-VEGF injection requirements for 
prediction using the ML system. A solid AUC from 70% to 80% 
was achieved for treatment requirement prediction [60]. Prahs et 
al. instructed a DCNN neural network by OCT images to facilitate 
decision-making regarding anti-VEGF injection [61], and the 
outcomes were better than that of CML [60]. These studies are 
an essential step toward image-guided prediction of treatment 
intervals in neovascular AMD or PDR management.

Treder et al. automatically establish a model to detect exudative 
AMD from SD-OCT [62] automatically. For research studies 
based on fundus images, images with AMD were assigned into 
four classes (no evidence of AMD, early-stage AMD, moderate-
stage AMD, and CNV AMD), [63] or 2-class classification (no or 
early-stage AMD and moderate or advanced stage AMD) [58]. 
The diagnostic accuracy is better in the 2-class classification of the 
recent studies. The DCNN appears to detect a screening function 
in these experiments, and the performance is comparable with 
related healthcare professionals.

Table 2: The timeline of selected articles on Deep Learning in AMD 
(2017-2020).

DM, Choroidal neovascularisation, and other Macular diseases 
OCT has had a tremendous effect on diagnosing and managing 
macular diseases, specifically wet ARMD and diabetic macular 
oedema. OCT also provides near-microscopic images of the retina in 
vivo with quick acquisition protocols and astounding structural details 
that cannot be seen using other ophthalmic examination techniques. 

From a DL perspective, macular OCTs possess several attractive 
qualities as a modality for DL. The augmenting growth in the 
number of macular OCTs routinely collected worldwide. This 
sizeable number of OCTs is required to instruct DL systems where 
having many tutoring examples can aid in coupling many-layered 
networks with millions of parameters. Macular OCTs have dense 
three-dimensional structural data-based information that is usually 
consistently captured. The macular field and the foveal fixation 
are consistent from one volume scan to another. This significantly 
lowers the computer vision task's complexity and allows networks 
to reach meaningful performance with smaller data sets. OCTs 
provide structural detail that is not usually visible using traditional 
imaging modalities and provide a promenade for uncovering 
innovative biomarkers of the disease. 

-Classification of referable 
and non-referable AMD 
using CFP [22,33,58]
-Classification of 4-class 
AMD severity using CFP 
and universal features [63]
-Dry-AMD detection using 
OCT images [49]  
-AMD detection using 
OCT images [64]

-9-step AREDS severity 
scale using CFP and an 
ensemble model [57]
-Wet-AMD detection using 
ultra–wide-field fundus 
images [59]
-Geographic atrophy in 
fundus autofluorescence 
[62] 

-Classification of 9-step 
AREDS severity scale 
using fundus images and 
multi-task strategy [51] 
-Classification of AMD 
simplified severity score 
using fundus images of 
both eyes [65] 
-GA detection in color 
funds images [67]
-Multiple clinical referral 
suggestions on OCT 
images [69] 

-AMD prognosis in a wide 
time interval using fundus 
images of both eyes and 
demographic information 
of patients [70]
-AMD prognosis in 
exceeding the inquired year 
using fundus images and 
genotypes [71] 
-RPD detection with 
intermediated to late AMD 
using FAF and CFP [72]
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One of the initial applications of DL to macular OCTs was in 
the automated categorization of AMD [64-73]. Approximately 
100000 OCT B-scans were used to train a DL classifier based on 
VGG-16 to achieve an AUC of 0.97 [64]. Several studies used a 
technique known as transfer learning, where a neural network is 
trained on ImageNet and ensuing then trained on OCT B-scans for 
retinal disease classification [65-68].

DeepMind and the Moorfields Eye Hospital combine the power 
of neural networks for both segmentation and classification tasks 
utilizing an encoded AI framework. A dismemberment network 
is first used to delineate fifteen different retinal morphological 
features and OCT acquisition artefacts during this approach. 
The output of this network is then moved to a classification 
network which makes a frame of referral triage decision from 
four categories (urgent, semi-urgent, routine, observation) and 
classifies the presence of ten different OCT pathologies as choroidal 
neovascularisation (CNV), macular oedema without CNV, drusen, 
geographic atrophy, epiretinal membrane, vitreomacular traction, 
full-thickness macular hole, partial-thickness macular hole, central 
serous retinopathy and 'normal') [69]. Using this approach, the 
Moorfields-DeepMind system reports performance on par with 
experts for these classification tasks (although in a retrospective 
setting).

Retinopathy of prematurity (ROP)
ROP is one of the foremost causes of childhood blindness, with an 
annual incidence of ROP-related blindness of 32 000 worldwide [73].

There are two main barriers to effective implementation of ROP 
screening: first, the diagnosis of ROP is subjective, with significant 
variability of opinion among the examiners in the diagnosis leading 
to inconsistent application of evidence-based interventions [74]; 
and second, there are limited trained examiners in many regions 
of the world [75]. Telemedicine is emerging as a viable model 
to cover a large geographical area for addressing the problem by 
allowing a single physician to examine infants over a sizeable 
geographical area virtually. 

There have been some early attempts to use DL for automated 
diagnosis of ROP [76,77], which could potentially address for 
implementation barriers of ROP screening.

Brown et al. [76] studied the results of a fully automated DL 
system that could evaluate the essential features of severe 
ROP, with an AUC of 0.98 compared to a consensus reference 
standard diagnosis with a combining image-based diagnosis and 
ophthalmoscopy. In ROP diagnosis, the i-ROP DL system has 
agreed with the consensus that it is more frequent (six out of eight 
experts). Subsequent work confirmed that the i-ROP DL system 
is helpful to formulate a severity score for ROP that demonstrates 
objective monitoring of disease progression, regression, and 
response to treatment [78]. When compared with the same set of 
100 images ranked, the algorithm had 100% sensitivity and 94% 
specificity in detecting pre-plus or worse disease.

AI in refractive surgery
Refractive surgery has undergone rapid advancements in the last 
decades with sound, visual effects and long-term safety [79]. There 
are several refractive surgery types available both in the cornea 
and lens. Among all the refractive surgeries, the most popular 
surgeries are- excimer laser photorefractive keratectomy (PRK), 
laser-assisted in situ keratomileuses (LASIK), and small incision 
lenticule extraction (SMILE) surgery that uses femtosecond 
laser. Before going through these procedures, the exclusion of 
keratoconus is significant.

Due to the occult onset of keratoconus, its early stages are often 
challenging to detect. Furthermore, it dramatically affects the 
patient’s vision with a risk of blindness. Many ways from different 
perspectives have proposed using machine learning technology to 
assist in the research and diagnosis of keratoconus [80].

To improve the diagnostic accuracy of keratoconus, keratectasia, 
and other related diseases, different screening equipment are often 
combined during the clinical diagnosis the process to develop 
algorithms for multi-source diagnostic methods, which include 
anterior segment OCT devices, optical aberration measuring 
instruments, confocal microscopy, and in vivo measurement 
of corneal biomechanics. The results of different functional 
instruments have different meanings, and there are significant 
differences in the results of different instruments with the same 
functional category, analysing these inspection parameters is 
complex and complicated. Also, different population-based studies 
have shown that ethnic origin influences the keratoconus incidence 
and corneal physiological parameters of people in different regions 
[81]. A compatible, robust, and convenient model is necessary to 
overcome these different issues.

A study was performed on a retrospective analysis to develop 
diagnostic algorithms from a single corneal topographic device to 
the cross-platform data of three various topographic device sources 
[82]. Another research, where a diagnostic model combined 
with corneal biomechanical measurement has also proven high 
diagnostic performance [83,84].

Recently, a study was done among 2000 participants based on the 
Scheimpflug corneal tomography parameters to establish a model 
that can diagnose subclinical keratoconus with high accuracy. 
They used the support vector machine (SVM) and gradient boosted 
decision tree (GBDT), an iterative machine learning algorithm 
composed of multiple decision trees that screens attribute features 
with larger weights, to construct a subclinical keratoconus 
diagnosis model, and performed a 10-fold cross-validation to 
verify the accuracy. The model achieved a 95.53% diagnostic 
accuracy. The accuracy of the model in distinguishing subclinical 
keratoconus from the normal cornea was 96.67%, and the accuracy 
in distinguishing keratoconus from the normal cornea was 98.91% 
[85]. The majority of the research mainly focuses on the analysis 
of images and data. Some of the most commonly used methods 
are support vector machine (SVM) [86] decision tree (DT) [87], 
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multilayer perceptron (MLP), radial basis function (RBFNN) [88], 
and convolutional neural networks (CNN) [89].

It is essential to ensure the accuracy and predictability of corneal 
refractive surgery; the risk of overcorrection or undercorrection 
is reduced [90,91]. Previous nomogram reports of adjusting 
magnitudes of spherical equivalent and astigmatism before 
PRK and LASIK have shown that the use of multiple regression 
analysis to establish a nomogram model that can consider 
numerous factors, including age, diopter, and corneal curvature, 
improves the accuracy of PRK and LASIK surgery [92-94]. 
Some more factors influencing the outcome of surgery have also 
been observed, such as temperature, humidity [95], wind speed, 
and air pressure [96]. Unlike PRK and LASIK, the nomogram 
adjustment of SMILE surgery needs to consider more factors and 
depends more on the experience of the surgeon. A study on 1146 
cases that underwent SMILE surgery with ideal postoperative 
results. The multilayer perceptron algorithm was used to train the 
artificial neural network model to predict the SMILE nomogram 
and conduct clinical control experiments for validation. The study 
compared the outcomes of the surgeon group with the machine 
learning group in terms of safety, efficacy, and predictability. 
The outcomes of all aspects of the machine learning group have 
reached the level of experienced surgeons or even better [97]. So, 
for better visual outcomes, refractive surgeons should actively 
embrace the convenience brought by artificial intelligence to help 
this discipline develop faster and more accurately.

Future of AI Application in Ophthalmology
Most studies regarding the intelligent diagnosis of eye diseases 
focused on binary classification problems, whereas in a clinical 
setting, visiting patients suffer from multi categorical retinal 
diseases. For instance, a model trained to evaluate AMD will fail 
to consider a patient with glaucoma as diseased because the model 
only can discriminate between AMD from non-AMD. 

Choi and his colleagues carried out work applying DL to 
automatically detect multiple different retinal diseases with fundus 
photographs. When only standard and fundus images for DR were 
used in the proposed DL model, the classification accuracy was 
87.4%. However, the accuracy is 30.5% when including all ten 
categories [98]. The model's accuracy has declined while the 
number of diseases is increased. To further improve the utility 
of AI in clinical practices, we should make more efforts to build 
intelligent systems that can help detect different retinal diseases 
with high accuracy.

Additionally, a single abnormality detected from one imaging 
technique cannot always guarantee the correct diagnosis of a 
specific retinal disease (e.g., DR or glaucoma) in clinical practice. 
Multimodal clinical photographs, such as optical coherence 
tomography angiography, visual field, and fundus images should 
be integrated to build a generalized AI system for more reliable AI 
diagnosis. 

However, the need for a massive amount of data remains the most 
fundamental problem. Images with severe diseases or rare diseases 
are particularly insufficient. The population characteristics, various 
systematic diseases, and the various disease' phenotypes should be 
considered when selecting input data.

Above all, by building interpretable systematic AI platforms 
using sufficient high-quality and multimodal data and advanced 
techniques, we can enhance the applicability of AI in our clinics. 
We hope we might make it possible to adopt intelligent systems in 
the inevitable clinical work process with reliable accuracy. 

Conclusions 
DL and ML are state-of-the-art AI that has revolutionized the AI 
field. DL has shown clinically acceptable diagnostic performance 
for ophthalmology in detecting many retinal diseases, particularly 
in DR, ROP and AMD. Research with many data is needed 
in evaluating the clinical application and cost-effectiveness of 
different DL systems in clinical practice.
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