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ABSTRACT
The total variation (TV) regularization is popular in iterative image reconstruction when the piecewise-constant nature 
of the image is encouraged. As a matter of fact, the TV regularization is not strong enough to enforce the piecewise-
constant appearance. This paper suggests a different regularization function that is able to discourage some smooth 
transitions in the image and to encourage the piecewise-constant behavior. This new regularization function involves a 
Gaussian function. We use the limited-angle tomography problem to illustrate the effectiveness of this new regularization 
function. The limited-angle tomography situation considered in this paper uses a scanning angular range of 40°. For 
two-dimensional parallel-beam imaging, the required angular range is supposed to be 180°.
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Introduction
When measurements are insufficient, the image reconstruction 
problem does not have enough information to obtain a unique 
reconstruction. For example, the two-dimensional parallel-
beam tomography requires a scanning range of 180°. If the data 
acquisition system does not allow a full scan of 180°, this situation 
is referred to as the limited-angle tomography, which is almost 
impossible to obtain a stable reconstruction with the measurements 
alone. This is a typical compressed sensing problem, which can be 
solved with additional constraints [1-3].

In X-ray computed tomography (CT), it is reasonable to assume 
that the images are piecewise-constant. One way to enforce a 
piecewise-constant image is to enforce the gradient image to be 
sparse. In theory, the L0 ‘norm’ is able to measure the sparseness 
of an image by counting the non-zero elements if we treat an image 
as a vector. However, the L0 ‘norm’ is not user-friendly in terms of 
optimization. A convenient alternative remedy is to minimize the 
total variation (TV) norm of the image.

We put the term norm in single quotes because the L0 ‘norm’ is 
not really a norm. In fact, it is not important whether the Bayesian 

term in the objective function is a norm or not. It is more import 
that the Bayesian term can effectively characterize the features of 
the image to be reconstructed. The Bayesian term is a function of 
the image.

This paper argues that the TV norm is not ideal to enforce the 
piecewise-constant nature of an image, because the total variation 
measure cannot distinguish between a smooth monotonic function 
and a piecewise-constant monotonic function. If a function is 
monotonically increasing or decreasing on an interval, the total 
variation value is the absolute value of the difference of the 
function values at the two end points of the interval.

This paper suggests a new regularization function that is able to 
distinguish between a smooth monotonic function and a piecewise-
constant monotonic function. Our new function contains a Gaussian 
function, which is an exponential function of a quadratic function.

Methods
We start with the one-dimensional (1D) case. Let a 1D vector be 
𝒙 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]. The TV measure for this vector is given as

𝑇𝑉(𝒙) = |𝑥2 − 𝑥1| + |𝑥3 − 𝑥2| + ⋯ + |𝑥𝑛 − 𝑥𝑛−1|,                      (1)

that is,
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 					     (2)

The proposed measure is defined below; we call it a Gauss measure 
because we introduce an exponential factor to each term in (2):

                                   (3)

where 𝛼 is a user specified hyperparameter. As 𝛼 → 0, the proposed 
measure degenerates to the TV measure. Due to the exponential 
factor in each term of (3), this new measure defined in (3) is not a 
norm of the vector 𝒙 because the homogeneity property is violated. 
If a norm of the vector 𝒙 is denoted as ‖𝒙‖, the homogeneity 
property requires that

‖𝒄𝒙‖ =  |𝒄| × ‖𝒙‖,                                                                                       (𝟐)

for any scalar c. The Gaussian factor in (2) destroys this 
homogeneity property.

Figure 1 shows three functions on the interval [0, 𝜋]. The functions 
are only defined on the 100 points uniformly distributed on [0, 𝜋]. 
Thus, these three functions are, in fact, three vectors. They all have 
the same TV value of 1.

Figure 1: Three functions with the same TV value are defined on [0, 𝜋]. 
The Gauss measures are Linear (blue): 0.9995; Sinewave (red): 0.992; 
Step (yellow): 0.0067.

Let 𝛼 = 5 in (3). The Gauss measure for the linear function (blue) 
is 0.995, for the sinewave (red) is 0.992, and for the step function 
(yellow) is 0.0067. Therefore, when (3) is used as the objective 
function for minimization, the step solution is a preferred solution 
with the smallest Gaussian measure.

The essence of the Gauss measure defined in (3) is that it encourages 
a constant region or a large sudden jump. It discourages small 
gradual changes.

To extend (3) from 1D vectors to images can use the same 
approaches as to extend the conventional TV norm (2) to images. 
Usually, two ways are used: isotropic and anisotropic. The 
anisotropic extension of (3) to the 2D images can be defined as

	              (4)

Similarly, the isotropic 2D version can be defined as

          (5)

As an application of the proposed regularization function (4) or (5), 
we consider a limited-angle tomography problem. The iterative 
image reconstruction algorithm is in the form of a maximum-
likelihood expectation-maximization (ML-EM) algorithm, similar 
to that developed in [4]. The gradient of the regularization function 
is incorporated into the ML-EM algorithm with a small weighting 
parameter β.

In the computer simulations, the images were 256 × 256. For a full 
data set, there were 180 views over 180°. The imaging geometry 
was parallel beam. The 1D detector had 256 bins. The detector 
bin size was the same as the image pixel size. The anisotropic 2D 
version (4) of the image Gaussian measure was adopted in the 
computer simulations. The proposed MLEM+Gauss algorithm is 
expressed as

		  (6)

where  is the reconstructed image pixel (i, j) at the nth iteration, 
𝑝k is the kth ray-sum measurement, 𝑎(𝑖,𝑗)𝑘 is the contribution of pixel 
𝑥𝑖,𝑗 to measurement 𝑝𝑘, β is a control parameter, and  is the 
derivative of a penalty function U with respect to the image pixel 

 at the nth iteration, that is,

					     (7)

The associated derivative of (7) is given as

  (8)
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Figure 2: The iterative MLEM reconstruction using the full 180° data set. This image is used as a gold standard for other images to compare with.

Figure 3: The MLEM algorithm reconstructions when the scanning angular range is (LEFT) 70° and (RIGHT) 40°, respectively.

Figure 4: The MLEM+TV algorithm reconstructions when the scanning angular range is (LEFT) 70° and (RIGHT) 40°, respectively.

Figure 5: The proposed MLEM+Gauss algorithm reconstructions when the scanning angular range is (LEFT) 70° and (RIGHT) 40°, respectively.
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Results
The limited-angle parallel-beam tomography was considered 
in iterative reconstruction, in which the full angular range is 
180°. A 256×256 computer phantom was used, and its MLEM 
reconstruction using the full range data is shown in Figure 2 as 
the gold standard for other reconstructions to compare with. The 
proposed algorithm has two user defined parameters α and β. These 
parameters were chosen by trial-and-error. The chosen parameters 
are displayed at the top of Figures 3-5.

Two limited-angle situations were considered: 70° and 40°, 
respectively, using three algorithms: MLEM, MLEM+TV, and the 
proposed MLEM+Gauss. The number of iterations was 10,000. 
Their reconstruction results are shown in Figures 3, 4, and 5, 
respectively.

It is observed from Figure 3 that the MLEM algorithm is unable 
to reconstruct any useful images for limited- angle tomography. 
From Figures 3 and 4, the TV and the proposed Gauss can 
handle the case of 70° scanning angular range, while the Gauss 
regularization performs slightly better. When the scanning angular 
range is further reduced to 40°, the proposed Gauss regularization 
method clearly outperforms the TV regularization.

Conclusion
This paper modifies the well-known TV norm by introducing a 
Gaussian factor. The conventional TV norm has a drawback that 

it cannot distinguish a smooth function and a piecewise-constant 
function as illustrated by Figure 1. On the other hand, the newly 
proposed measure is able to distinguish them. As an application in 
limited-angle tomography, the proposed method outperforms the 
TV method when the scanning angular range is as small as 40°. 
It is expecting that the new regularization method can find many 
more applications where the measurements are incomplete.
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