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ABSTRACT
In COVID-19, patients in severe condition often suffer from a major complication that leads to lung injury, ARDS 
and possibly death: the cytokine storm. The cytokine storm is composed of many cytokines, including IL-6, IL-
2, and TNF-ɑ for COVID-19. To combat such effects, a cocktail of cytokine-inhibiting drugs are administered. 
However, a combination of drugs can be overly taxing upon the patient, thus creating the demand for a drug 
that targets multiple cytokines. This project identifies multi-cytokine inhibiting compounds from FDA-approved 
drugs with machine-learning methods. Many machine-learning algorithms were applied to the task and Support 
Vector Machines proved best with strong performances across all cytokines. Under the constraints of limited data 
(30–60 samples) for some cytokines, we significantly boosted modeling power and accuracy with the application 
of data dimension reduction technique, Principle Component Analysis. After exhaustive exploration, the FDA-
approved hepatitis-C drug—glecaprevir—was identified with confidences of 80.52% for TNF-ɑ, 99.04% for IL-2, 
and 98.23% for IL-6.
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Acronyms and Abbreviations
ARDS, acute respiratory distress syndrome; CDK, Chemistry 
Development Kit; COVID-19, coronavirus disease 2019; CSF, 
colony stimulating factor; GB, gradient boosted tree; GUI, graphical 
user interface; IC50, half maximal inhibitory concentration; 
IFN, interferon; IL, interleukin; LR, logistic regression; MLP, 
multilayer perceptron; PCA, principal component analysis; RBF, 
radial basis function; ReLU, rectified linear unit; SARS, severe 
acute respiratory syndrome; SMILES, simplified molecular-input 
line-entry system; SVM, support vector machine; TNF, tumor 
necrosis factor.

Introduction
Cytokines
Cytokines are small water-soluble messenger proteins secreted 
by multiple types of cells. Cytokines have a large role in 
immunoregulation and inflammation control, managing much of 
the immune response. They are often secreted by cells and used 
either to activate its parent cell or neighboring cells in processes 
called autocrine and paracrine action. Some major producers and 
affected cells are B Cells, T Cells, Macrophages, and Neutrophils. 
The cytokines invoke change or activate cells by binding to their 
respective receptors on a cell and thus, changing the cell’s behavior. 
Major groups of cytokines include Interleukins (ILs), Interferons 
(IFNs), Tumor Necrosis Factor (TNF), Chemokines and Colony 
Stimulating Factors (CSFs). Cytokines form a complex network of 
interactions, as they can induce cells to produce other cytokines [1,2]. 
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Cytokine Storm
The cytokine storm is defined as an uncontrolled release of 
cytokines. They occur in both viral diseases and non-infectious 
diseases. As mentioned, the overlapping and redundant nature 
of cytokines can cause a snowballing effect. Since cytokines are 
effective at low levels, such a reaction can cause a large influx of 
inflammatory cytokines. This also comes with the flood of immune 
cells activated by the cytokines into the local area. This causes great 
damage to the organs of the local area and the repeated entry of 
these immune cells can cause significant damage to membranes. In 
severe cases, the cytokine storm affects multiple organs, resulting 
in multiple organ failure [3-5,1]. 

Cytokine Storm in COVID-19
Coronavirus disease 2019 (COVID-19), an upper respiratory 
disease caused by Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2), has become a worldwide pandemic, in total 
infecting 230 million people and killing nearly five million people 
(September 24th, 2021) [6]. It was observed that there was a high 
occurrence of cytokine storms in severe cases of COVID-19. The 
cytokine storm can cause significant injury to a patient. The rapid 
and concentrated influx of immune cells damage capillaries, and 
vascular barriers. Furthermore, the cytokines induced activity can 
cause apoptosis in the epithelial cells. As a result, patients suffer 
Acute Respiratory Distress Syndrome (ARDS), lung injury and 
multiple organ failure. Thus, the cytokine storm can be detrimental 
to an already weakened patient. It is observed that severe cases of 
COVID-19 are associated with the rise of IL-1β, IL-6, IL-2, IL-8, 
and TNF-ɑ levels in serum. Furthermore, IL‑6 is associated with 
poor prognosis [7-12]. For the purposes of this study, we will be 
targeting cytokines IL-6, IL-2, and TNF-ɑ due to the availability 
of relevant data. 

Treatment
To combat the effects of the cytokine storm in COVID-19, 
multiple approaches have been explored. Corticosteroids, 
hydroxychloroquine, and chloroquine have been tested for their 
suppression of inflammation. However, they have been shown to 
have problematic side effects. Tocilizumab has also been tested 
for IL-6 inhibition but neglects the other cytokines [4,8,9,11,13]. 
A cocktail of cytokines inhibitors could be used to counteract the 
storm but would likely be overly taxing upon a patient’s body and 
potentially injured liver. Thus, there is an urgent need for a drug 
that can target multiple cytokines. To combat the problem, this 
study proposes to use machine-learning (ML) methods to identify 
potential candidates for multi-cytokine inhibition from FDA-
approved drugs. In repurposing already FDA-approved drugs, we 
avoid the many years and hundreds of millions of dollars required 
for drug development and testing. Furthermore, the current drugs 
have known side effects and dosages that can ensure safety.

Methods
Throughout the research process, a number of software and 
databases were utilized to conduct in‑silico experiments. The main 
language used to conduct the theoretical experiments was Python 

and a collection of its libraries including NumPy, Scikit Learn, 
PyTorch, and Matplotlib. In gathering data, web databases such as 
PubChem, ZINC15, and DrugBank were used in conjunction with 
PaDEL-Descriptor for data preparation.

To find an inhibitor of multiple types of cytokines, we formulate 
the task as an inhibitor prediction or classification problem: known 
inhibitors (targeted towards a type of cytokine) labeled as positive 
samples; random molecules or drugs labeled as negative cases.

Three models are trained, each to classify inhibitors for their own 
cytokine. The learned models were then applied to a preserved set 
of FDA-approved drugs and the intersection of the three models 
formed our candidate pool that applies to all three cytokines. As 
a note, this method could be extended to more combinations of 
different cytokines.

Data Collection and Processing
As shown in Figure 1, we first collected the tested compounds 
and proven inhibitors of TNF‑ɑ (1525 compounds), IL-6 (19 
compounds), and IL-2 (29 compounds) from PubChem, and 
retrieved their Simplified Molecular-Input Line-Entry System 
(SMILES), which describes the 2D structures of each compound. 
For each tested compound, we removed those that have a reported 
inhibiting activity value (IC50) greater than 5 µM, leaving the more 
effective compounds in the dataset. Then we download a collection 
of FDA-Approved Drugs from ZINC15. Two-hundred FDA-
approved drugs were partitioned from the original set to form our 
preserved set. We submitted the SMILES of all downloaded data 
into PaDEL-Descriptor program developed using the Chemistry 
Development Kit (CDK)—to generate 1875 distinct chemical 
and physical descriptions for each compound [14]. After filtering 
nominal and missing entries (not useful to training a machine 
learning model), we retained 1200 descriptors for each compound. 
With the necessary features prepared, the data was then divided into 
a training set and a testing set for each type of cytokine Figure 2.
For each type, its inhibitors (positive class) were paired with an 
equal amount of random FDA-approved drugs from the remaining 
FDA-approved drugs list (negative class). Then both classes’ data 
for each of cytokines were combined in common datasets, which 
were then split into training sets and testing sets in an 80–20 
training-test set. The aforementioned process left the TNF-ɑ dataset 
with 2260 training samples and 566 testing samples, IL-6 dataset 
with 30 training samples and 8 testing samples, IL-2 dataset with 
42 training samples and 12 testing samples.

Data Cleaning and Feature Selection
Due to the nature of the dataset and a possibility of overfitting—a 
small number of samples (30–60 for IL-6 and IL-2) and a large 
number of features—it was very difficult to achieve consistent and 
strong performance when training. Thus, we conducted feature 
selection through means of principal component analysis (PCA). 
The correlation between all features is calculated and the resulting 
matrix is decomposed into major components or eigenvectors 
(Figure 3). 
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Figure 1: The research workflow and resources. Data sources used in this project include PubChem, DrugBank, and Zinc15. The data is then fed into 
the data processing pipeline, which generate features/descriptors of the molecules. Through further feature extraction, the data is condensed down 
for better efficiency and performance during the machine-learning phase. Finally, the inhibitor predicting models are deployed to identify potential 
inhibitors to TNF-α, IL-6, and IL-2.

Figure 2: A flowchart of data organization and process that details how cytokine-specific models are trained and then used to make a multi-targeted 
inference. Following the solid line, known IL-2 inhibitors form the true samples of the dataset, while randomly sampled molecules are used as false 
inhibitors. The dataset is then shuffled and divided into 5-folds, used in evaluating the trained model. The data is taken and used to train the inhibitor-
predicting model. Following training, the preserved set of FDA molecules (unseen) is run through the model to identify potential inhibitors. We repeat 
the same process for the other cytokines following the dotted lines. The candidates are aggregated together to form the multi-target inhibitor predictions.

Note: Dotted lines indicate that the process done to IL-2 is repeated for other cytokine types.
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We selected the smallest amount of eigenvectors that preserves 
98% of the information and project the data onto the subspace 
spanned by the chosen eigenvectors, which left us with condensed 
features for training: IL-6 reduced to 25 features, IL-2 reduced to 
40 features, and TNF-ɑ reduced to 175 features. As to be discussed 
in Supplementary Materials, the addition of PCA significantly 
improved the performance of the models (Supplementary Tables 
S1–S3).

Machine Learning
For each type of cytokine, we trained a model with its respective 
data. We selected Support Vector Machines (SVM) as the model 
to predict if a compound is an inhibitor to its cytokine type. SVM 
are a class of supervised learning methods that are very effective in 
high-dimensional space. They are also fit for the problem, as they 
are robust to limited data with large amounts of features.

During the training, the processed samples are submitted into 
the model and predictions are matched against labels to assess 
performance. The SVM model is trained with the Scikit Learn 
solver and the performance of the models are evaluated by final 
test accuracy.

Due to limitations of data, a thorough hyper parameter search was 
done to achieve the best performance (Table 1). In SVM, a number 
of kernel types can be applied to achieve optimal performance: 
Linear, Polynomial, Gaussian Radial Basis Function, Sigmoid. 
Another parameter is the gamma, which is used to weight the 
kernels (Auto or Scale). Through some grid search, the optimal 
combinations for each cytokine model were for TNF-ɑ: Polynomial 
+ Auto, IL-2: Polynomial + Scale, and IL-6: Sigmoid + Auto. 
To ensure that the model generalizes well, we ran 5-fold cross 
validation and averaged the accuracies to obtain the final one. In 

Figure 3: Energy graphs of Principle Component Analysis applied to (A) IL-6, (B) IL-2, and (C) TNF-ɑ data. The energy graphs visualize the amount 
of “information” obtained from each successive eigenvector. The horizontal line is the boundary of 98%, which we use as the threshold to the number 
of eigenvectors needed.
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addition, L2 regularization (ridge regression) was applied to the 
models.

Table 1: Average percent accuracies over 5-fold cross validation for each 
type of SVM kernel. The row names are in the following format: cytokine 
target, kernel-scaling method. The column heads are the different types of 
SVM kernels. RBF—radial basis function.

Linear Polynomial Gaussian RBF Sigmoid
TNF-α, Auto 93.0 95.4 94.0 79.4
TNF-α, Scale 93.0 92.6 94.8 90.4
IL-6, Auto 68.6 70.7 54.3 81.1
IL-6, Scale 68.6 42.5 68.6 86.4
IL-2, Auto 81.2 86.2 58.5 70.6
IL-2, Scale 81.2 60.9 81.1 82.7

Last, we applied the trained models to the preserved set of 
FDA-approved drugs to identify candidates. The model outputs 
are +1 (inhibitor) and −1 (random molecule), and we collected 
those predicted as inhibitors. For better understanding, we also 
used Platt’s Scaling, a learned function that maps real values to 
probability ranges, to obtain a probability. The predicted inhibitors 
for each type of cytokine were compared to find common drugs 
among them that inhibited all three types.

Results
The predicted inhibitors simultaneously affecting all three targets: 
TNF-α, IL‑2, and IL-6 are presented in Table 2; affecting just 
two targets are presented in Table 3. The SVM model identified 
a promising candidate: glecaprevir, It is an FDA-approved drug 
that serves as an antiviral treatment against hepatitis-C virus. 
The drug is shown to be relatively safe with minimal to no 
genotoxicity. The predicted probabilities of inhibition for this 
drug for each type of model were for TNF-α—80.5216%, IL‑2—
99.0453%, and IL-6—98.2354%. All probabilities reported are 
created through Platt’s Scaling, as mentioned in Section Methods, 
Subsection Machine Learning. Other potential candidates were 
identified in with the SVM model (efinaconazole, alvimopan, 
and olodaterol) though with a lower probability threshold, 35% 
(default is 50%). 

Table 2: Identified potential simultaneous inhibitors of three cytokines 
IL-6, IL-2, and TNF‑α. Indicated by asterisk  (*) are compounds that 
have ≥ 50% probability. SVM—support vector machines, LR—logistic 
regression, GBT—gradient boosted trees.

SVM ≥ 35% LR ≥ 35% GBT ≥ 35%
efinaconazole venetoclax* acarbose

alvimopan delafloxacin
glecaprevir* doxycycline
olodaterol iohexol

mitoxantrone
osimertinib*
teniposide

Table 3: Inhibitors affecting simultaneously at least two cytokines.
TNF-α–IL2 TNF-α–IL6 IL6–IL2

methohexital
ribociclib
enzacamene
triclocarban

N/A

ceftaroline fosamil
valrubicin
erythromycin
ceftriaxone
Synribo (omacetaxine)
canqrelor
vinblastine
gadofosveset
ioxilan
dalfopristin
ceftolozane
simeprevir
isavuconazonium
tetracycline
ceftotetan
fluticasone furoate
ecteinascidin
spinosyn D
CDTR-PI (cefditoren pivoxil)
verteporfin
acarbose
idarubicin
daunorubicin
ombitasvir

Through other models (explored in Section Results, Subsection 
Study of Different ML Algorithms) we also found promising 
candidates venetoclax (through LR), a medication for lymphocytic 
leukemia, and osimertinib (through GBTs), and a drug to treat 
non-small-cell lung carcinomas. Venetoclax and osimertinib both 
interestingly reduce neutrophil count, which might affect cytokine 
production and immune cell recruitment. Some lower prediction 
score (35–50% probability) candidates identified were include 
acarbose, delafloxacin, doxycycline, iohexol, and mitoxantrone.

Study of Different ML Algorithms
Beyond the combination of PCA with SVM used for the results, 
other means of classification were explored. First, the standard 
MultiLayer Perceptron (MLP) was utilized (Figure 4). 

Figure 4: Model architecture of proposed MultiLayer Perceptron (MLP). 
FC—fully connected layer. ReLU—Rectified Linear Unit, BatchNorm—
batch normalization The MLP model is composed of 3 feedforward blocks 
and the final probability is computed through a softmax function.



Volume 6 | Issue 1 | 6 of 7Microbiol Infect Dis, 2022

The MLP is constructed with three feed-forward layers and 
rectified linear unit (ReLU) as its activation function. The input 
of the model was not processed with PCA due to the model’s 
property of implied feature extraction. The model was trained for 
250 epochs with a learning rate of 0.01.

The second approach taken was a logistic regression model, 
a standard machine-learning algorithm used for classification 
and regression. Due to its limited modeling power, the logistic 
regression was done on PCA cleaned data. Using Scikit Learn, 
the model was trained for 2000 iterations and L1 regularization to 
prevent overfitting.

The last method was Gradient-Boosted Trees (GBTs), where trees 
are congregated based on gradients to make a collective decision. 
Similarly, the Scikit Learn solver was used to train the model at a 
learning rate of 0.1 and the input of the model was PCA-processed. 
After thorough evaluation with 5-fold cross validation, none of the 
models performed as well as the SVM in combination with PCA-
processed data (Table 4).

Table 4: Model accuracies (%) for each type of cytokine. Measured 
across 5-fold cross validation.

MLP (no 
PCA)

Logistic 
Regression GB Trees SVM

TNF-α 89.1 93.3 94.0 95.4
IL-6 86.0 76.4 81.4 86.4
IL-2 83.2 82.9 70.8 86.2

Discussion
Through the proposed technique, we identified a promising 
FDA-approved candidate for multi-cytokine inhibition (TNF-α, 
IL-6, IL-2) in glecaprevir with predicted probabilities of 
TNF-α—80.52%, IL-2—99.04%, and IL-6—98.23%. With 
the combination of PCA and SVMs, optimal accuracies of 
TNF-α—95.4%, IL-6—86.4%, IL-2—86.2% over 5-fold cross-
validation to avoid overfitting. Our study suggests that clinical 
trials be tested on the efficacy of glecaprevir on cytokine storm 
inhibition. If successful, the candidate can significantly reduce 
the complications in severe COVID-19 cases without the 
immense side effects of a cocktail of drugs to combat multiple 
types of cytokines. Furthermore, this drug is not restricted to only 
COVID-19 induced cytokine storms but also for other cytokine 
storms involving TNF-α, IL-6, and IL-2.

A significant work of this project is its efficacy despite the 
limitations of data. Pulling from existing databases, only TNF-α 
had a significant number of valid samples (2260): IL-6 had 31 
samples and IL‑2 had 47. The lack of data posed a significant 
challenge to learning an effective machine-learning model 
to identify inhibitors. The challenge was overcome with the 
application of PCA to reduce the noise in the data and made the 
data easier to learn. This was further improved by the model 
selection, as SVMs are very good with small datasets. Overall, we 
suggest that for future similar experiments/projects, researchers 
can follow these proposed techniques for strong performance on 
small datasets.

What differentiates this work from previous attempts at cytokine 
inhibition is that it is targeted towards multiple types of cytokines. 
Through multiple criteria, we were able to identify compounds 
that are versatile enough for the range of cytokines. Previously, 
to inhibit a cytokine storm, a mix of single target drugs was 
administered, putting further stress on a weakened patient. Thus, 
condensing the treatments to one drug has significant upside for 
both recovery and inhibition.

This project is advantageous in that it can identify preapproved 
FDA drugs and apply them to different use cases. This controls 
risk of the proposed treatment as it has been proved relatively safe 
in vivo and has known side effects. The utilization of in-silico 
research for new treatments will continue to develop and provide 
more insightful options with faster iterations.

We recommend that future research and experimental testing 
the listed compounds and their efficacy against cytokine storms. 
Furthermore, we suggest further experimentation with the 
proposed technique for other disease-induced cytokine storms.

Conclusion
We developed a set of machine-learning models to predict the 
possible FDA-approved drugs that would simultaneously inhibit 
at least two of proteins related to immune response in COVIF-19: 
TNF-α, IL-2, and IL-6. One of the selected drugs—glecaprevir—is 
predicted to be a simultaneous strong inhibitor of all three cytokines. 
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