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ABSTRACT
The ABO blood group system has been linked with multiple infectious and non-infectious diseases and disorders 
such as, hepatitis B, dengue haemorrhagic fever, cancer, cardiovascular diseases, hematologic disorders, metabolic 
diseases, malaria, etc. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the virus that causes 
COVID-19 (Coronavirus disease 2019), a respiratory infectious disease that has become a global pandemic. 
Several reports have investigated the role of ABO blood groups in susceptibility/resistance to various infectious 
Diseases, and have proposed that ABO blood group polymorphism may be linked with COVID-19 susceptibility 
and clinical outcomes, however, the results were questionable. It has been suggested that blood type O may have 
a protective role against COVID-19 infection, as blood group O individuals were found COVID-19 positive in 
lower levels. This could emonstrate that those Individuals are less susceptible to infection, or are asymptomatic 
in higher proportions, or may be associated with a slightly lower risk for severe COVID-19 disease. It has been 
hypothesized that the mentioned association can be probably explained by the configuration of distribution of the 
sialic acid-containing receptors on host cell surfaces induced by ABO antigens through carbohydrate-carbohydrate 
interactions, that could maximize or minimize the SARS-CoV-2 virus spike protein (S) binding to the host cell. The 
classical viral entry through the ACE-2 receptors can be prevented by the anti-A antibodies that are produced from 
O and B blood group individuals. Experimental models based on cellular lines suggested a possible explanation for 
blood type configuration of infection showing that S protein/ACE-2-dependent adhesion to ACE 2-expressing cells 
was especially inhibited by natural or monoclonal human anti-A antibodies. Consequently, non-A blood groups 
individuals, mainly O, or B blood group, that produce anti-A antibodies, may have a lesser degree of susceptible 
to SARS-CoV-2 infection due to the inhibitory effects of anti-A antibodies. Therefore, it is possible that individuals 
with group A are more susceptible to SARS-CoV-2 infection and/or manifestation of a severe status.
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Introduction
SARS-COV-2 virus is responsible for COVID-19 disease that 
has resulted in a global pandemic [1]. The SARS-COV2 virus has 
various consequences on the global population, mainly in older 
individuals with comorbidities such as cardiovascular disease, 
pulmonary diseases, diabetes mellitus, as those individuals are 
more susceptible to severe disease [2,3].

The significant morbidity and mortality of COVID-19 disease led 
the scientific interest to investigate possible elements that may 
render individuals more susceptible to COVID-19 disease and 
determining possible risk factors that are implicated in progression 
and severity of COVID-19 disease [4]. Many hypotheses based 
mainly on molecular level have been suggested for the varied 
susceptibility to COVID-19 disease and vulnerability to severe 
disease. One of those has been focused on the ACE-2 variable 
expression in the airway epithelia of the lung [5].
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Risk factors are parameters related to an increased risk of infection 
or disease. Two types of risk factors have been determined, non-
modifiable and modifiable [6]. Several risk factors for COVID-19 
infection susceptibility and prognosis have been suggested, even 
though are still under investigation. Non-modified risk factors for 
COVID-19 infection are innate immune elements.

Current clinical research suggests that individual’s age, gender 
and chronic disease are known risk factors in the susceptibility 
to COVID-19 disease [7]. Males and older individuals are more 
susceptible to infection and development of more severe disease 
[8,9]. However, no biological biomarkers have been revealed to 
predict the susceptibility to COVID-19 disease or that can interpret 
the variability in the disease course among different groups until 
now [10].

The human ABO blood group contains four blood types, A, B, AB, 
and O, is the most important blood group system in humans, and is 
localized on chromosome 9 (9q34.2). Blood group is an inherited, 
non-modifiable feature, and consequently a non-modifiable risk 
factor. The antigens present or absent on erythrocyte surfaces are 
responsible for A, B, AB, and O blood group individuals [11].

Landsteiner’s ABO blood groups are carbohydrate epitopes, 
genetically inherited and are present on the surface of erythrocytes 
and other human cells. The antigenic determinatives of A, B and 
AB blood groups are trisaccharide components GalNAcα1-3-
(Fucα1,2)-Galβ-and Galα1-3-(Fucα1,2) -Galβ-, and of O blood 
group antigen is Fucα1,2-Galβ-. As mentioned blood groups are 
genetically inherited, however, various environmental factors 
can possibly influence which blood groups will be transported 
more frequently to the next generation. Previous researches have 
suggested an association between ABO blood groups and a wide 
spectrum of diseases, including cardiovascular disease, several 
types of cancer, and susceptibility to certain infections, such as 
SARS-CoV-2 [12-19].
 
Moreover, the host susceptibility too many infections/diseases can 
be increased or decreased by differences in expression of blood 
group antigen. Many blood group antigens assist intracellular 
uptake, signal transduction, or cell adhesion through the membrane 
micro domains organization and modify the innate immune 
response to infection [20].
 
The susceptibility to viral/bacterial infection has been found 
to be associated with ABO blood groups. Such viruses/bacteria 
that show a clear ABO blood group susceptibility are Norovirus 
[21], Hepatitis B [14,19,22], Influenza [23], H. Pylori [24], P. 
Falciparum  [ 25], and N. Gonorrhoeae  [ 26]. More specifically, it 
has been shown that the blood group O might significantly de-
crease the risk of Hepatitis B [27], Rotavirus gastroenteritis was 
significantly more dominant among individuals with blood group 
A and less dominant among those with blood group B [28]. It has 
also been observed that blood group A malaria patients had an 
increased risk of anemia than those with B, AB and O phenotypes 

[29]. Among individuals infected with Dengue virus, was revealed 
that those with AB blood group were at an increased risk of 
developing dengue haemorrhagic fever compared to those with A, 
B or O blood groups [30]. Moreover, a meta-analysis suggested that 
individuals with blood group O appeared to be more susceptible 
to Noro-virus infection, whereas those with non-O blood groups 
might not influence susceptibility to this infection [31]. 

Given that SARS-CoV-2 is a completely new virus it remains 
not fully known whether the ABO blood groups influence the 
susceptibility to COVID-19 infection. However, previous reports 
have suggested an association between ABO blood groups and host 
susceptibility to infectious respiratory viruses, such as SARS-CoV 
[10,12,13,15,32-43], MERS-COV[44], AH1N1 [45], and influenza 
[46]. Nevertheless, other studies found no associations between 
ABO blood groups and susceptibility to COVID-19 infection 
[47-51]. However, there have been controversial outcomes due 
to possible confounder effects. To be more specific, it has been 
shown that non-O blood group individuals had a higher risk of 
being infected [12,13,52-57], whereas blood group O individuals 
were less possible to become infected with SARS-CoV-2 [15].
 
Previous cross-sectional and meta-analysis reports showed that 
SARS-CoV-2 positive individuals were more possible to have 
blood group A [35], or had a higher risk of being infected [42,57], or 
may have greater susceptibility to the disease [10,12,15,53,58,59], 
or a higher probability of SARS-CoV-2 infection [10,34,35], or 
a higher prevalence of infection amongst individuals with blood 
type A [37,43,60]. However, similar researches [39,48], failed 
to confirm this association. Zhao et al. [12], Padhi et al. [41] and 
Latz et al. [39], recorded a higher risk of COVID-19 infection with 
blood type AB, and Aljanobi et al. [61] and Abdollahi et al. [62] 
found that AB blood group individuals had a higher susceptibility 
to COVID-19 infection. In contrast, similar studies showed a 
lower risk associated with blood group AB [13,63].

A few reports recorded that blood group B was associated with 
a higher risk of SARS-CoV-2 infection [43,65], however other 
studies did not confirm such a finding [12,64]. Blood group 
O patients showed a decreased risk for acquiring COVID-19 
infection compared to individuals with non-O blood group 
[12,13,36,37,42,55-57,59]. Moreover, similar researches recorded 
a lower prevalence of infection amongst blood type O individuals 
[35,39,40,43,65], or had lower susceptibility to COVID-19 
infection [15,61,67], or had a decreased probability of COVID-19 
infection [10]. Moreover, a protective role against SARS-
CoV-2 infection among blood group O individuals has been also 
suggested [10,12,13,39,43,53,59]. The aim of the current review 
was to research the possible association between the ABO blood 
groups and susceptibility to SARS-CoV-2 infection.

ABO blood system as a non-modifiable risk factor of SARS-
CoV-2 infection 
The ABO blood group system is widely used in clinical practice, 
consisted of A and B antigens and their corresponding antibodies. 
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A and B antigens are coded by a gene localized on chromo-some 
9q34.1-34.2., it contains A,B and O alleles and four phenotypes, 
A,B,O, and AB have been identified [11]. Histo-blood group 
antigens (HBGAs) are complex carbohydrate molecules that 
consisted of specific oligosaccharide sequences expressed on the 
surface of erythrocytes membranes, and are also highly expressed 
on a wide number of human cells and tissues, such as digestive 
and respiratory tracts epithelia, and on endothelial cells underlying 
blood vessels which also are able to compose ABH carbohydrate 
epitopes, vascular endothelia, platelets, and neurons [16,68].

It has been suggested that HBGAs regulate the spreading of 
pathogens through the action of natural antibodies and the proteins 
of the complement system. Differences in blood group antigen 
expression are able to enhance or reduce host susceptibility to 
various pathogen infections. ABO blood groups play a crucial role 
in infection by acting as receptors and/or co-receptors for viruses, 
bacteria, and parasites [17,22].

As already mentioned, many blood group antigens assist 
intracellular uptake, signal transduction, or cell adhesion through 
the membrane micro domains organization and modify the innate 
immune response to infection [20]. 

The possible role of ABO blood group in viral and bacterial 
infections, and the relation between ABO blood groups 
and infectious and non-infectious diseases has been widely 
investigated. Additionally, ABO blood group system has been 
used as a genetic marker in the human genome, obtained by a 
polymorphic glycosyl-transferase encoded by two prevalent active 
and a recessive inactive alleles [69].

Pathway responsible for the entry of the SARS-CoV-2 virus 
into the cell
SARS-CoV-2 belongs to B beta coronavirus family and is 
responsible for the human severe acute respiratory syndrome [70]. 
It consisted of two important viral proteins, the nucleo-capsid and 
the spike (S) proteins. S proteins are large trans-membrane heavily 
N-glycosylated proteins that are responsible for the association 
with a cell surface receptor as S protein mediates SARS-CoV-2 
entry into the host cells [71,72].

The main host cell receptor of SARS-CoV-2 is Angiotensin II-
converting enzyme 2 (ACE2) as plays a critical role in the entry of 
the virus into the cell to cause the final infection [73-75]. The virus 
entry into the host cell through the ACE2 protein as mentioned, 
a multi-functional protein that represents the SARS-CoV binding 
domain. A complex signaling pathway is responsible for the 
entry of the virus into the cell as ACE2 binds to the S protein that 
protrudes from the viral envelope [76] and, after the subsequent 
ACE2-viral S protein complex cleavage by cathepsin L [77], the 
virus enters the cell by receptor-mediated process of endocytosis 
[78]. It has been recorded the similarity of SARS-CoV-2 
mechanism of entry of virus into host cells, exploiting the structural 
similarity of SARS-CoV-1 and SARS-CoV-2, ACE1 and ACE2 

receptors [79,80]. The ACE1 and, the ACE2 a recently discovered 
homologue, are two antagonist enzymes of the RAS signaling 
pathway that act and offset each other [79,81]. The principal 
role of ACE1 is the conversion of angiotensin I to angiotensin 
II, a peptide that is responsible for inflammation, proliferation, 
fibrosis and constriction of blood vessels. An increased ACE2/
ACE1 ratio provides protection against endothelial and vascular 
dysfunctions [82]. SARS-CoV-2 entry into the host cells requires 
the SARS-CoV receptor ACE2 and a specific trans -membrane 
serine protease 2 (TMPRSS2) for the S protein priming [79,80]. A 
moderate expression of ACE2 characterizes the upper respiratory 
tract and this should limit the virus receptiveness [83].

The host-virus fusion process is dominated by amino acids and the 
most crucial molecular step is the mobilization of the viral serine 
molecule, which is carried out by the host TMPRSS2 [84,85]. This 
hydrophilic amino acid is involved in SARS-CoV-2 pathogenesis 
and it has been suggested that the binding between virus and host’s 
cell occurs through O-glycosylation [85]. The serine-rich repeat 
proteins (SRRPs) have emerged as an important group of cell 
surface adhesins found in a growing number of bacteria are involved 
in the adhesion of different bacteria [86] to host cell carbohydrates 
through O-glycosylation, have not yet been detected for the 
viral infections pathogenesis, however it is possible that such a 
mechanism might occur in SARS-CoV infections pathogenesis. It 
is certain that a more particular interaction between host and virus 
takes place. N- and O-glycosylation may occur in this complex 
pathogenic pathway and among multiple biological processes 
dominated by the pathogen’s amino acid serine [87]. 

The proposed theory of a viral invasion, initiated by the mobilization 
of the serine molecule from the viral S protein and completed by 
the generation of a genetically undefined, hybrid A-like/Tn host-
pathogen molecular bridge, does not question the ACE2 receptor 
protein determined functions [88,89].

The pathogenesis of a viral infection cannot be compared with the 
pathogenesis of a non-viral one, however it has been suggested that 
SARS-CoV-2 invades the human cell by producing an intermediate 
hybrid O-glycan. The virus uses the host cell’s machinery in order 
to survive by exploiting the A-like/Tn formation after release of 
serine molecules as it is not possible outside its host [89].

ABO blood group system relation with infection of SARS-
CoV-2
Age, gender [90] and ABO blood groups [42] are the only known 
demographic or clinical risk factors that affect the susceptibility to 
SARS-CoV-2 infection and the subsequent severity of COVID-19 
disease. Especially, an increased host susceptibility connected 
with specific risk and predisposing factors in the host has been 
documented for various infectious diseases [15,17,22,32]. 
Additionally, the contribution of those risk factors is extremely 
high that it could cover any genetic effect on susceptibility to 
COVID-19 that would be more easily visible in the less severely 
infected patients. This could be the reason why one Genome-Wide 
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Association Study (GWAS) failed to disclose a point of association 
between COVID-19 disease and the ABO locus [91].

Previous and recent investigations have recorded an association 
of infectivity of various pathogenic microorganisms with specific 
blood groups [17], however it still remains unknown the exact 
mechanism that explains the association between ABO blood 
groups and viral infection [19]. It has been shown that genetic 
susceptibility to Norovirus is to a great degree dependent on the 
presence of HBGAs, specifically those corresponding to the ABO, 
secretor, and Lewis phenotypes [92]. Similarly, an HBGA genetic 
background has been found to be associated with Rotavirus 
susceptibility [93]. The clinical significance of HBGAs could be 
attributed to their expression on the surface of human erythrocytes 
and many human tissues [94].

Ellinghaus et al. [42] observed that the ABO blood group 
polymorphism was related with 2002-2003 SARS-CoV infection, 
however it has been questioned whether this increased susceptibility 
is also present for SARS-CoV-2 infection. The investigators in the 
mentioned genomic study recognized a 3p21.31 gene cluster as a 
genetic susceptibility locus in COVID-19 patients with respiratory 
failure and mentioned a possible involvement of the ABO blood 
group system.

Despite the fact the SARS-CoV-2 infection exact mechanism is 
still under investigation and the relation with ABO antigens is one 
of the hypotheses, it is apparent that a robust basis exists for such a 
hypothesis and needs further research. Several investigators have 
proposed possible molecular mechanisms underlying the specific 
ABO blood groups susceptibility to COVID-19 infection [95-98]. 
The mentioned molecular mechanisms can be, in general, divided 
into two essential groups, those influencing the SARS-CoV-2 
infection and transmission risk, and those affecting COVID-19 
disease severity. Although the suggested mechanism for such an 
association has been explained by the ACE2 receptor expression 
that may have an impact on susceptibility to COVID-19 infection, 
the overall relationship with ABO blood group seems to be 
impossible [10].
 
The exact mechanism of ABO blood group in COVID-19 infection 
has not been yet clarified, however some hypotheses have been 
proposed based on conclusions drawn by previous investigations. 
ABO blood group is a specific antigen type on erythrocyte 
membrane, but blood group antigens are expressed in airway 
and alveolar epithelial cells and in body fluids [99]. It has been 
supposed that through binding receptor-mediated affinity, genetic 
susceptibility of blood group glycoproteins can function, especially 
as an invasion mechanism. Cooling et al. [17] and Mackenzie et al. 
[100] demonstrated that blood group antigens were valid receptors 
for some infectious bacteria.

The beginning of SARS-CoV-2 infection is hypothesized to 
implicate the S protein attachment to ACE2 receptor [32,84]. 
However, it still remains unknown whether the ACE2 expression 

level differs among individuals with different blood groups and 
whether individuals with blood type A have a higher ACE2 
expression levels. Consequently, further investigations are needed 
to explore the exact mechanisms.

The difference in the suitability to COVID-19 infection could be 
explained by the differences in the ABO antigens. Dai [96] showed 
that SARS-COV-2 S protein imitates the blood group’s antigen at 
a rate 80 %, in a previous virus that caused SARS in 2003.
 
Previous epidemiological studies have examined the relation 
between ABO phenotypes and COVID-19 infection risk, and only 
a few failed to reveal a significant association [48,91,101-103]. 
Moreover, the absence of an association between ABO blood 
groups and susceptibility to SARS-CoV-2 infection was also 
reported in another study [48], which suggested that ethnicity may 
have resulted in biased outcomes.

Silva-Filho et al. [104] proposed that the association between 
ABO blood group and susceptibility to COVID-19 infection and 
progression could be attributed to diverse distribution of sialic 
acid-containing receptors on host cells’ surfaces. The mentioned 
distribution is regulated by ABO antigens through carbohydrate-
carbohydrate interactions (CCIs), which could maximize or 
minimize the virus S protein binding ability to host cell’s surface 
receptors. Viral entry is promoted by interaction of two subunits, 
S1 and S2. S1 specifically contributes to viral binding to host cell 
surface receptors through two domains, S1A corresponding to 
the N-terminal region, that interacts with sialic-acid containing 
glycoproteins and glycolipids, and S1B corresponding to the 
receptor-binding domain, which binds to ACE2 receptors. SARS-
CoV-2 entry into a host cell is facilitated by ACE2 receptor, as 
mentioned [105].

ABH antigens are present on the erythrocyte membrane, 
platelets, lymphocytes, arterial and venular capillary endothelium 
[106]. Antigen A predominantly, and antigens B and AB, are 
responsible for carbohydrate accumulation, whereas antigen H 
that characterizes O blood group, is not involved in the induction 
of carbohydrate promotion. Additional carbohydrate accumulation 
promotes CCIs, maximizing the interaction, cell recognition, 
and aggregation. Increased inter-action raises the possibility of 
SARSCoV-2 successfully binding to host cells through specific 
binding of S protein domains to ACE2 and CD147, a trans-
membrane protein that may also promote the infectious process 
through viral anchoring to host cells [104].

ABO blood groups, SARS-CoV-2 infection susceptibility, and 
possible Mechanisms 
The first statistical research examined the association between ABO 
blood groups and SARS-CoV-2 infection, suggested that blood 
group A individuals had a significantly increased risk of acquiring 
SARS-CoV-2 infection, whereas blood group O individuals had 
a significantly reduced risk compared to non-O blood groups 
[12]. Similar studies and meta-analyses researches confirmed the 
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decreased risk of acquiring SARS-CoV-2 infection for individuals 
with blood group O or recorded that they were protected against 
COVID-19 disease [10,12,13,39,62,64,107], or recorded an 
increased risk for non-O blood groups individuals, most often 
blood group A [35,36, 63,108-110]. Other reports revealed that 
blood group O individuals had decreased susceptibility to SARS-
CoV-2 infection [15], whereas those with type A made them more 
vulnerable [12]. Gerard et al. [64] based on data published by Zhao 
et al. [12] from Wuhan, focused on the status of anti-A antibodies, 
found that individuals with blood type-B and O, were less probably 
to have COVID-19, or suggested that blood group O and B may be 
protective against COVID-19.

On the contrary, Zietz et al. [13] and Latz et al. [39] reported that 
group B individuals were more susceptible to be SARS-CoV-2 
positive, and in a systematic review and meta-analysis Kabrah et 
al. [111] demonstrated that studies carried out in the United States, 
Saudi Arabia, Iraq, and China, blood group O individuals were 
at higher risk for COVID-19 disease, whereas other studies from 
France, Sweden, Turkey, and Cyprus recorded that blood group A 
individuals were at higher risk for COVID-19 disease. The same 
report showed that blood group AB individuals had lower risk of 
acquiring SARS-CoV-2 infection. This finding was confirmed by 
a study carried out in Bahrain [63].
 
The blood group AB synthesis permits the strongest contact with 
a pathogen and molecularly prevents any is isoagglutinin activity, 
making AB blood group the least protected and the smallest 
among the ABO blood groups. On the contrary, individuals 
with blood group O, that are susceptible to other infections have 
survived all infectious diseases in an immunological balance with 
many pathogens and remain the largest blood group worldwide 
[112]. Those individuals rarely become infected by severe diseases 
classified as blood group A/ B-related infections. They maintain 
anti-A/Tn cross-reactive and anti-B complement-dependent is 
agglutinin activities, affected by the polyreactive, non-immune 
IgM, which is considered as the crucial point of innate immunity 
and the first line of defense. In this hypothetical pathogenesis model 
the contact between host and pathogen is initiated by formation of 
a trans-species, developmental A-like/Tn O-glycan, which plays a 
critical role in the evolution of species, in the human is replaced by 
ABO phenotypic epitopes and is controlled by its molecularly and 
functionally connected innate immunity [112].
 
SARS-CoV-2 binds to the carbohydrates that determine the ABO 
blood groups, which are considerably expressed in respiratory 
tract mucous membrane [88,113]. Consequently, AB blood group 
has the most contact and blood group O the least with the pathogen 
[88]. Moreover, it has been supposed that blood group A was 
considered to have more attachment molecules on the vascular 
wall by protecting P-selectin and intercellular cell adhesion 
molecule-1(ICAM-1) from cleavage which increases adhesion and 
inflammation and can cause more severe COVID-19 disease [96].

Arend [114] reported that blood group A individuals susceptibility 
to infections with Plasmodium Falciparum, that is responsible for 

malaria tropica, is similar to SARS-CoV-2 infection, and given 
the fact that the ABO (H) phenotype development is molecularly 
associated with the humoral innate immunity development, it 
could be hypothesized that the viral and the non-viral pathogenesis 
could be induced through a hybrid, developmental classical 
A-like/Tn O-glycan. It has been proposed that SARS-CoV-2 
infection is initiated a functional host-pathogen molecular bridge 
by constructing an intermediate and genetically undefined, 
serologically A-like/Tn structure, that must be differentiated from 
the blood group A-specific epitope. This is encoded by the ABO 
gene A-allele located on chromosome 9q34, which, together with 
the B-allele, defines the risk of acquiring life-threatening diseases 
in non-O blood groups individuals [114].
 
SARS-COV enters cells through the ACE2 receptors found in 
almost all cells of human organs [115]. The ability of natural 
antibodies to protect against certain viral infection could be related 
to the ability of anti-A and anti-B natural antibodies that are found 
in blood group O individuals to recognize A and B antigens on 
virus glycoproteins [32]. The absence of anti-A and anti-B natural 
antibodies in those individuals has been reported to restrict the SARS-
COV-2 binding with ABO carbohydrates and ACE2 receptors [109].

A previous study by Guillon et al. [32] regarding SARSCoV-1 
outbreak in Hongkong in 2003 recorded that blood group O(H) 
was associated with a low infection risk, whereas the interaction 
between S protein and host cell receptor was inhibited by natural 
and monoclonal anti-A anti bodies in vitro.

The SARS-CoV-2 S protein requires ACE-2 receptor to infect a 
cell, as already mentioned [32]. The interaction between S protein-
ACE2 receptor is blocked in the presence of anti-A antibodies [32], 
which could be an explanation for the protective role of blood group 
O against COVID-19 infection and mortality. ABO antibodies 
contribute to the modifications of the interaction between the 
SARS-CoV-2 S protein and ACE-2 receptor according to previous 
experimental investigations. Guillon et al. [32] investigated 
whether ABO antibodies could stop the interaction between the 
SARS-CoV receptor and ACE2. The authors hypothesized that 
the virions S protein produced by individuals with A or B blood 
groups could be covered with A or B carbohydrates epitopes, 
respectively. Natural anti-A or anti-B antibodies from blood group 
O, A, and B could bind these epitopes on the viral particles S 
protein, and consequently adhesion of S protein and ACE2 receptor 
can be inhibited and prevent its interaction with the ACE2 protein 
receptors in the host cell membrane, thereby preventing infection.

The protection accorded by blood group O has been attributed to 
circulating anti-A antibodies [32,116] of the IgG type which could 
interfere with the virus-cell adhesion procedure [32]. Similarly, 
anti-B antibodies from group O is often IgG and more powerful 
against the virus in contrast to the anti-B antibodies from group 
A or B which are mostly IgM [64,117]. The same conclusions 
were obtained when the association of ABO blood group with 
susceptibility to COVID-19 was analyzed from the perspective of 
ABO antibodies instead of ABO blood group antigens.
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As in transfusion [43], the dominant principles of this process could 
be that SARS-CoV-2 viruses produced in individuals with blood 
group A are able to express A antigens and infect individuals from 
blood groups A and AB without such antigen-antibody reactions. 
However, SARS-CoV-2 infection in individuals with B or O blood 
groups who have anti-A antibodies may provide some degree of 
protection. In a similar way, SARS-CoV-2 viruses that express B 
anti-gens are able to infect B or AB individuals. However, SARS-
CoV-2 infection in individuals with blood group A or O having 
anti-B antibodies may be somehow restricted. Blood group O 
individuals would have helped the most by possessing defenses, 
anti-A and anti-B anti-bodies, against SARS-CoV-2 viruses 
expressing A or B antigens. This hypothesis was resulted from an 
experimental model in which Chinese hamster ovary cells were 
generated to express on cell surface S proteins transferring A 
glycan antigens [32]. The adhesion of those ovary cells to Vero 
E6 cells expressing ACE2 was especially inhibited by a mouse 
monoclonal anti-A antibody or human natural anti-A antibodies. 
The study assessed a substantial reduction in the infective ability 
of the virus because of ABO polymorphism.

Zhao et al. [12], observed that blood groups B and O individuals, 
and with anti-A antibodies in serum had significantly a lower 
rate in the COVID-19 group than those without anti-A antibodies 
regardless the blood group [64]. Moreover, after comparison of 
the hypothesized protective effect of anti-A antibodies from blood 
group O and from blood group B, it was recorded that O blood group 
individuals were under-represented, whereas those from blood 
group B, on the contrary, were over-represented, which means 
that anti-A antibodies from blood group O were more protective 
than anti-A antibodies from blood group B. This last finding was 
attributed to the fact that the predominant immunoglobulin isotype 
of anti-B/anti-A antibodies in the serum of blood groups A and B 
individuals was IgM isotype, whereas for those with blood group 
O was IgG , as previously mentioned [116]. It is apparent that the 
proper function of this defense mechanism against SARS-CoV-2 
infection requires a strong immune system and adequate antibody 
production.

Blood group O individuals have a lower ACE level, whereas 
those with blood group A have a positive association with ACE 
efficiency [118]. ACE activates angiotensin and the lower level 
of this enzyme can decrease the risk of hypertension [119] which 
is a COVID-19 risk factor [120]. The mentioned mechanism has 
been suggested for developing more severe COVID-19 disease in 
blood group A individuals and less severe disease in blood group 
O ones [118]. ACE2 receptor can weaken inflammatory response 
and redox stress and also can offset the ACE effect [118, 21].
 
Blood group O individuals have higher interleukin-6 (IL-6) 
levels [12] than non-type O individuals [115]. IL-6 is a pro-
inflammatory cytokine, produced by many different cells 
including macrophages, dendritic cells, T-and B-cells, endothelial 
cells, astrocytes, microglia, and neurons, and plays a crucial role 
in cell defense in the acute inflammation phase [122], especially 

in moderating the inflammation reaction, consequently, the high 
level of IL-6 in individuals with O blood type could explain their 
lesser probabilities of developing severe COVID-19 disease and 
even death. However, previous researches recorded that IL-6 is 
associated with COVID-19 severity, as it can be ingredient of a 
cytokine storm [122-124]. IL-6 could play a dual role, a protective 
role with its implication in lung repair responses and aggravate its 
role in COVID-19 infection [125].

 It should be noticed that the degree of protection against SARS-
CoV-2 infection may depends on ABO anti-bodies titer, secretor 
status, and incidence of blood group O in the population [17, 126]. 
All of the mentioned mechanisms need to be investigated further.

Recent reports have proposed that host trans membrane protease 
serine subtype 2 (TMPRSS 2) may play a significant role in ABO 
blood group configuration of SARS-CoV-2 infection [80,87]. 
TMPRSS 2 protease is coded by a gene localized on chromosome 
21q22.3 [127], and has been found to be substantial for S protein 
priming and sequent infection of SARS-CoV [80]. However, it has 
not been confirmed whether SARS-CoV and SARS-CoV-2 share 
similar genomic sequences for the TMPRSS 2 protease. Moreover, 
viral serine proteolysis by TMPRSS 2 protease may permit serine 
mobilization, a critical molecule of mucin O-glycan that has been 
found to be critical for SARS-CoV-2 infection [80].

Arend [87], in an effort to explain why blood group A individuals 
are at risk whereas blood group O individuals are protected from 
SARS-CoV-2 infection, suggested that A, B, and AB blood 
groups have up-regulated IgM activity, whereas O group has 
down-regulated IgM activity due to glycosylation. The A, B, and 
AB blood groups are thus favorable targets because they contain 
A/B phenotypic-determining enzymes that promote greater viral 
molecular contact, whereas O blood group does not contain these 
enzymes and only binds the virus through hybrid H-type antigen 
creation. Additionally, IgM down-regulation in the blood group 
O leads to downstream anti-A and anti-B is agglutinin activity, 
hallmarks of innate immune activity. The individual risk of SARS-
CoV-2 infection cannot be predicted based on an individual’s 
ABO blood group alone because various risk factors exist and 
also blood group O is no longer regarded a genetic entity [128-
130]. Nevertheless, SARS- CoV-2 infection can be regarded as 
an evolutionary eclectic disease, conducing to the present global 
distribution with regard to human blood groups O, A, B, and AB, 
which according to Springer et al. [131] established over millions 
of years mainly in connection with ABO blood group-related life-
threatening diseases, such as malaria [114,132-134].

It is apparent that the possible implication of ABO blood groups 
in the COVID-19 susceptibility and generally in its dynamics does 
not mean that ABO blood groups are monadic and determining 
factors influencing the COVID-19 epidemic. Other factors, such 
as population age, previous diseases, effectiveness of the health 
care system and socioeconomic status, also have serious impacts 
on this epidemic.
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Moreover, the outcomes of the current research should be interpreted 
with great carefulness since some limitations exist, attributed to 
secondary limitations of the reports analyzed. The main drawback 
is the significant heterogeneity of those studies that depends on the 
study design, the methods of outcome estimation, and the possible 
differences in the study population. Another drawback is the effect 
of potential confounders such as gender, age, presence of vascular, 
cardiovascular, pulmonary diseases, and diabetes mellitus, that 
could not be eliminated, which may result in deviations in study 
conclusions because those factors may affect the vulnerability, 
susceptibility and the severity of COVID-19 disease. Finally, 
the current review was limited to English and Chinese language, 
which may have led to exclusion of reports in other languages hat 
are appropriate, potentially leading to selection biases.

Conclusion
The data presented above indicated that in the majority of the 
articles analyzed, ABO blood groups affect the SARS-CoV-2 
infection risk and several reports additionally indicated that blood 
group O, appears to have a protective role in comparison to non-O 
groups. It was also recorded that blood group O and B individuals 
had a lower risk of acquiring SARS-CoV-2 infection. 
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