
Volume 2 | Issue 1 | 1 of 5J Biotechnology App, 2023

Gibbs Artifacts Removal with Nonlinearity
Gengsheng L. Zeng*

Research Article

Department of Computer Science, Utah Valley University, 
Orem, Utah, USA;
Department of Radiology and Imaging Sciences, University of 
Utah, Salt Lake City, Utah, USA.

Journal of Biotechnology and its Applications
Research Article

Citation: Gengsheng L. Zeng. Gibbs Artifacts Removal with Nonlinearity. J Biotechnology App. 2023; 2(1); 1-5.

ABSTRACT
Background: Gibbs artifacts, appearing as oscillations or ringing around sharp edges or boundaries, are 
frequently encountered in image processing. They arise when the image's frequency components are adjusted, 
such as in image deblurring and sharpening. Linear methods are ineffective in reducing Gibbs artifacts; nonlinear 
methods may be more effective.

Methods: One such nonlinear method is the use of neural networks. This paper applies a simple convolutional 
neural network (CNN) to an image sharpening task and observes the effects of Gibbs artifacts. This network has 
only one convolutional layer, which consists of four channels. The well-known rectified linear unit (ReLU) is used 
as the nonlinear activation function.

Results: For simple one-dimensional (1D) and two-dimensional (2D), unrealistic case studies, the Gibbs artifacts 
are completely removed. The reason why the artifacts can be removed is explained.

Conclusions: This simple case study illustrates the power of nonlinear functions and the use of multiple channels. 
In fact, this task can be achieved without using a neural network. 
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Introduction
The Gibbs ringing artifact is a common artifact that appears 
as spurious oscillations near sharp edges in an image. These 
artifacts can degrade image quality and lead to errors in image 
interpretation. Gibbs artifacts appear when high frequency 
components are enhanced inconsistently. Linear methods are 
not as effective in reducing Gibbs artifacts, therefore nonlinear 
methods are commonly investigated. For example, in [1], a 
conceptually simple idea was proposed: first, the sharp boundaries 
were detected, and then the smooth region within the boundaries 
was processed. This approach avoided processing the edges. In 
a denoising task, lowpass filters are normally used. Avoiding the 
application of lowpass filters to the edges can preserve the image 

sharpness, while the noise is reduced in the relatively smooth 
regions.

In [2], a mask was generated for the overshooting regions. To 
detect and identify the overshooting regions is not easy.  Once the 
overshoot region was identified, an overshoot ripple filter was used 
to smooth out the overshoot ripples. Simple nonlinear filters such 
as the median filter, applied in the image domain or in the wavelet 
domain, were found effective for reducing Gibbs artifacts [3]. The 
median filter is a special case of the rank-order filters, its main 
application is to remove the salt-and-pepper noise.

It had been observed that the amplitude of the Gibbs ringing is 
directly proportional to the height of the image discontinuity. If 
the height of the discontinuity could be reduced, the subsequent 
ringing would also be reduced. To achieve this, separating the 
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image into stratified layers or partitions reduced the height of 
the discontinuity significantly. Each partition was then filtered 
separately and recombined nonlinearly to yield the final filtered 
image [4]. This method weakens the filtering of image edges that 
have large discontinuities, reducing the Gibbs phenomenon while 
simultaneously reducing the image noise.

Another nonlinear method to reduce Gibbs artifacts while 
deblurring an image was to temporarily remove the background [5]. 
If the target features (e.g., hot lesions) had a positive background, 
removing the background before applying the post-processing filter 
significantly helped with target deblurring and suppressing Gibbs 
artifacts. This method works only if a nonnegativity constraint 
is used, such as the iterative maximum-likelihood expectation-
maximization (ML-EM) algorithms and the similar multiplicative 
updating algorithms [6].

Bayesian methods are considered nonlinear and effective. For 
example, the total variation (TV) norm of the image can be used 
to promote the piecewise constant appearance in the image [7,8]. 
Most Bayesian methods are iterative in nature. However, the 
downside of the TV norm minimization is that some important 
image details are removed or suppressed unintentionally. Of 
course, machine learning methods [9] are the state-of-the-art 
approaches in all aspects of medical imaging, including image 
reconstruction, denoising, deblurring, and artifact reduction. In 
this paper, we use a simple case study to explain how a neural 
network can reduce Gibbs artifacts.

Methods
Our simple hypothetical study cases in this paper are for illustrative 
purposes only and are not intended for real-world applications. 
The task is image deblurring, and we assume that we have a large 
dataset of data/label pairs to train a convolutional neural network 
(CNN). The labels represent the unblurred true image, which 
contains piecewise-constant regions. The input data consists of the 
corresponding blurred images.
To remove the Gibbs ringing artifacts while deblurring the image, 
we use a single layer of CNN. The output of a convolutional 
neuron is calculated using an inner product and a bias:

where In (x,y) is the input image, Outc (x,y) is the cth channel’s 
output, hc (x,y) is the convolution kernel of the cth channel, Biasc 
(x,y) is the bias of the cth channel, and σ is the ReLU (rectified 
linear unit) activation function defined as

There are M channels in this CNN layer. The neural network’s 
final output is a weighted sum of the channel outputs as

(3)

where  is the weighting coefficient for the cth channel.

If the ReLU function is disabled and all biases are set to zero in 
(1), then each channel in (1) produces a linearly filtered image. If 
a convolution kernel is not a low-pass filter kernel, it is most likely 
that the channel output image will have Gibbs ringing artifacts. 
We argue that the combination of biases, the ReLU function, and 
multiple channels together can remove the Gibbs artifacts in our 
special case. The principle is explained in Figure 1 using a one-
dimensional (1D) example. 

The true function f(t) is given in Figure 1(a), and its ripple-
corrupted version g(t) is shown in orange in Figure 1(b). There are 
four channels, and four bias values, b1,b2,b3,b4, are shown. Figure 
1(c) shows the result of 

and Figure 1(d) shows the result of
    (5)

Finally, Figure 1(e) shows the final processed result, which is a 
weighted sum of (4) and (5) as

   (6)

Expression (6) shows the final output, which is the weighted sum 
of the four channels. The selection of the biases, b1,b2,b3,b4, are not 
unique. The neural network thus has many optimal solutions. 

The most important ‘trick’ of removing the ringing artifacts is the 
‘difference’ operation shown in Figures 1(c) and (d). In expression 
(4), we observe that in the interval (1, 3), both g(t)-b1 and g(t)-b2 
are positive; the ReLU function σ can be ignored. Thus, we have

which is a constant in the interval (1, 3). The ripples in g(t) are 
completely removed as shown in Figure 1(c).

Similarly, in expression (5), we observe that in the interval (1, 5), 
both g(t)-b3 and g(t)-b4 are positive; the ReLU function σ can be 
ignored. Thus, we have

  (8)

which is a constant over (1, 5). The ripples in  and the large 
jump at t = 3 are completely removed as shown in Figure 1(d).

We see two boxcars, one in Figure 1 (c) and the other in Figure 
1(d). The weighted sum of these two boxcars approximates the 
original function as illustrated in Figure 1(e). The weighting 
factors are shown in (6). We must point out that the weighting 
factors in (6) are determined by parameters A and B. Therefore, 
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this method works only if the function f(t) is a piecewise-constant 
function and only takes the values A and B.

Using the jargons of machine learning, the ‘labels’ are piecewise-
constant functions and only take the values A and B. After training, 
the network does not remember any of the training function pairs. 
Instead, the network learns the values A and B, and then selects the 
bias values, b1,b2,b3,b4, which are not unique. In other words, the 
loss function of the network has infinite numbers of optima and 
may converge to any of them.

Results and Discussion
After explanation of the working principle in Section II, Section 
III presents two study cases. In these two studies, the true 1D or 2D 
functions were piecewise-constant and only took the five values: 
0, 0.25, 0.5, 0.75 and 1. The functions were randomly generated.

For the one-dimensional (1D) case, the true function is displayed 
in Figure 2(a), where the function foriginal is defined on 0, 1, 2, …, 
256. Then the function was blurred with a Gaussian point spread 
function of variance 9.5, resulting in fblurred shown in Figure 2(b). 
In the next step, the iterative Richardson-Lucy algorithm [10,11] 
was used to deblur the function fblurred with the same Gaussian point 
spread function. The number of iterations was 50, and the resultant 
function fRL is shown in Figure 2(c), where some severe Gibbs 
ringing artifacts are clearly observable.

After 8 channels were used and proper bias values were selected, 
the ripples were successfully removed, and the final result ffinal is 
shown in Figure 2(d). As a matter of fact, our over-simplified Gibbs 

artifact removal task is fairly trivial, because the true function 
values are discrete and known (or can be learned). There are many 
other ways to achieve the same results without using the ReLU 
function. Here is an alternative approach. We set up four threshold 
values as: t1=0.125, t2=0.375, t3=0.625, and t4=0.875. To remove 
the ringing ripples, we simply use the following expression (9).

In the same way, for a two-dimensional (2D) example, Figure 3 
shows how a one-layer CNN unblurs an image without producing 
Gibbs artifacts. In both 1D and 2D cases, the Gibbs ringing artifacts 
were successfully removed. The ‘trick’ is to use multiple channels, 
a nonlinear activation function, and some carefully selected bias 
values. An alternative way to do it is to use the expression (9).

Conclusions
This paper suggests that nonlinear methods are more powerful and 
can achieve better results than linear methods. The Gibbs ringing 
artifact removal problem has been troubling the image processing 
communities for many years. It seems that linear methods such 
as lowpass filtering are less effective to battle the Gibbs artifacts. 
Nonlinear methods have the flexibility to explore more ways to 
battle the Gibbs artifacts.

(9)

Figure 1: Steps to show how a CNN removes the Gibbs artifacts. (a) The original true function. (b) A function with ripple artifacts shown in orange 
color. (c, d) The combination of the biases, the ReLU function, and multiple channels can produce ‘boxcar’ functions.  (e) Weighted sum of (c) and (d).

A 

(e) 

B 

f(t) 
A 

B 

(a) 

t 

b2 

b4 

A 

B 

(b) 

b1 

b3 

g(t) 

b2-b1 

(c) 

( ( ) − 1) − ( ( ) − 2) 

b4-b3 

(d) 

( ( ) − 3) − ( ( ) − 4) 

1 3 5 1 3 5 1 3 5 

1 3 5 
1 3 5 

( ) =

⎩
⎪
⎨

⎪
⎧

0 ( ) < 1
0.25 1 ( ) < 2
0.5 2 ( ) < 3

0.75 3 ( ) < 4
 

1 4 ( ) < 5.  



Volume 2 | Issue 1 | 4 of 5J Biotechnology App, 2023

Figure 2: A one-dimensional example. (a) The original true function. (b) Blurred function by a Gaussian kernel. (c) Deblurred function by the iterative 
Richardson-Lucy algorithm. (d) Processed function generated by the summation of perceptron outputs.
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Figure 3: A two-dimensional example. (a) The original true image. (b) Blurred image by a Gaussian kernel. (c) Deblurred function by the iterative 
Richardson-Lucy algorithm. (d) Processed image generated by the summation of perceptron outputs.

(a)     (b)     (c)     (d)



Volume 2 | Issue 1 | 5 of 5J Biotechnology App, 2023

The machine learning models are nonlinear, because they use 
nonlinear activation functions such as the ReLU function. One 
distinguishing advantage of using a machine learning method is 
that the network can automatically extract some useful features 
from the training data. The useful features in the data presented in 
this paper are the fixed discrete image values. Once the features are 
discovered, to find a solution becomes easier.

This paper uses a simple image deblurring situation to explain 
that a multi-channel, one-layer CNN is able to produce deblurred 
images that are free of Gibbs artifacts. The convolution actions 
beblur the image and produce Gibbs artifacts as the side effects. 
The bias and ReLU activation remove the artifacts. Even though 
our task is over-simplified, the practical applications with discrete 
image values may exist in the real world. For this over-simplified 
task, we do not have a linear solution to remove the Gibbs artifacts.

As suggested by expression (9), the CNN model is not the only 
approach to provide a nonlinear solution. Some alternative 
nonlinear solutions exist. In general, the Gibbs artifact removal 
problem is still open. More investigations and new results are yet 
to come.
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