Glutamine as A Therapeutic Strategy in Inflammatory Bowel Diseases: A Systematic Review

Carlos Murilo Schanuel¹, Eleusa Nogueira Dias², Ana Paula Ferreira³, Klaus Ruback Bertges³ and Luiz Carlos Bertges⁴*

¹Medical Doctor, Gastroenterology Postgraduate, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Suprema.

²Medical School Student, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Suprema.

³University Professor, Faculdade de Ciências Médicas e da Saúde, Suprema.

Correspondence: Luiz Carlos Bertges, Coordinator, “Latu Senso” Gastroenterology Postgraduate Program, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Suprema.

Received: 12 July 2019; Accepted: 15 August 2019

ABSTRACT

Introduction: Glutamine is a non-essential L-α-amino acid – a polar compound due to the presence of amide groups. It is involved in maintaining the intestinal mucosal barrier, acting on gene expression, cell proliferation, differentiation, apoptosis, oxidative action, and regulation of the immune system. Due to its importance to the endothelium, glutamine has been the subject of studies for the protection and preservation of the intestinal mucosa against atrophy, which is caused by inflammatory bowel disease.

Objective: To verify the efficacy of glutamine in inflammatory bowel disease based on a systematic review.

Methods: The most relevant studies in the MedLine databases were reviewed by including randomized controlled trials only. The search strategy used the following keyword combinations: “glutamine”; “inflammatory bowel disease”. To identify study designs, the following terms were used: “randomized controlled trial”; “humans”.

Results: The scope of this review included six articles with controversies regarding the efficacy of glutamine in the treatment of inflammatory bowel disease. Each study used different dosages, methods of administration and duration of administration.

Conclusion: According to the results, we concluded that glutamine supplementation in inflammatory bowel diseases does not cause patients any harm. Additionally, both intestinal permeability and modulation of immune and inflammatory response were improved, thus confirming the efficacy of glutamine in inflammatory bowel disease. Although these strategies are very promising and appear to be useful in some contexts, further clinical studies are needed to firmly establish the relevance of glutamine supplementation in inflammatory bowel disease. Thus, further research is needed to determine the optimal dosage, duration, route and method of administration for better use of this amino acid by the enterocytes and for maintaining homeostasis.

Keywords
Inflammatory Bowel Disease, Treatment, Glutamine.

Introduction
The gastrointestinal tract (GIT) is a tube that has a mucous membrane covering its lumen and plays specific roles such as digesting and absorbing dietary nutrients, protecting the body against physical and chemical damage to the luminal content, and providing immunity against such damage [1,2]. The lining is made up of a single layer of epithelial cells, 80% of which
Glutamine is an L-α-amino acid which is synthesized from glutamic acid, valine and isoleucine, and is a polar compound due to the presence of amide groups. Two enzymes participate in pathways and protects cells against apoptosis and cell stress during normal conditions [19]. Glutamine has also been shown to increase enteral blood flow, resulting in a mucosa that is more resistant to translocation by bacterial pathogens [20]. Thus, the purpose of this study was to verify through a systematic review the role of glutamine in intestinal health and its efficacy when administered as a supplementation in IBD.

Methods

The most relevant studies originally published in English, Spanish and Portuguese in the last thirty years were reviewed using the MedLine database. Only human clinical trials were chosen in search of the most clinically relevant studies.

This study used the following search keywords: “glutamine”; “inflammatory bowel disease”. MeSH was referenced in order to find variations for the keywords. The inclusion and exclusion criteria are shown in Table 1.
Clinical trials

RESULTS

Glutamine action on IBD.

Other diseases.

Abstract only – English, Spanish and Portuguese.

Case report, case series, animal models.

METHOD/INTERVENTION

With Crohn’s disease and ulcerative colitis.

Gastroint Hepatol Dig Dis, 2019

Table 1: Inclusion and Exclusion Criteria Applied in the Selection of Studies.

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>SAMPLE</th>
<th>METHOD/INTERVENTION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akobeng et al. [5]</td>
<td>18 children: 9 receiving standard polymeric diet (group S) and 9 receiving Gln-supplemented diet (GG).</td>
<td>After 4 weeks, evaluate the PCDAI, orosomucoid level, platelet count and body weight.</td>
<td>There was no significant difference between the 2 groups in the proportions of patients who achieved remission: 5 (55.5%) out of 9 in group S vs. 4 (44.4%) out of 9 in GG (p = 0.500)</td>
</tr>
<tr>
<td>Coëffier et al. [34]</td>
<td>Duodenal biopsies conducted by UGIE on 12 healthy non-smoking volunteers (6 + and 6 –).</td>
<td>A study conducted in an organ culture model with stimulation of IL-1β pro-inflammatory cytokine the production, mimicking some of its characteristics during IBD [Gln], ranging from 0.5 to 10 mM.</td>
<td>[Gln] increasing from 0.5 to 10 mM ↓ in vitro production of pro-inflammatory cytokines, IL-6 and IL-8, and ↑ production of cytokine AI IL-10, by the human intestinal mucosa during experimental stimulation of the inflammatory response.</td>
</tr>
<tr>
<td>Ockenga et al. [38]</td>
<td>24 patients with acute IBD exacerbation (19 with CD and 5 with UC) and predicted TPN >7 days.</td>
<td>CG received 1.5 g/kg/day AA in an acid solution (Gln-free solution), and the Gln Group received 0.3 g/kg/day alanyl-gln, which was added to 1.2 g/kg/day standard AA solution (isonitrogenic and isocaloric).</td>
<td>Over the 7 days of the study, Gln supplementation had no specific effect on CDAI, WBC, or CTL compared to standard TPN. There was no difference in the frequency of diarrhea, pain or EIM. Specific clinical symptoms related to UC were not evaluated due to small sample size. It also had no effect on ↓ in standard AI therapy.</td>
</tr>
<tr>
<td>Den Hond et al. [30]</td>
<td>14 CD patients who had increased IP.</td>
<td>They received 7 g Gln or placebo (glycine) 3x/day for 4 weeks.</td>
<td>No significant IP ↓ in patients with ↑ baseline values; no significant effect on other parameters such as CDAI, CRP, plasma Gln, plasma glutamate and ammonia, nutritional indexes.</td>
</tr>
<tr>
<td>Akobeng et al. [41]</td>
<td>15 active CD children, none of them having used corticosteroids or immunosuppressive agents in the past.</td>
<td>CG received standard diet, and the Gln Group received Gln-supplemented diet. Serum antioxidant concentrations (glutathione, vit C, vit E …) and MDA were measured before and after 4 weeks of exclusive enteral nutritional treatment.</td>
<td>Mean [Se] ↑ significantly (p = 0.001). There was a significant ↓ in [vitamin C] and [vitamin E]. [Vitamin A], urate, glutathione and MDA did not change significantly throughout the study.</td>
</tr>
<tr>
<td>Benjamin et al. [31]</td>
<td>28 CD patients in the remission phase with abnormal IP. None with a history of using NSAID, alcohol, tobacco and protein supplements.</td>
<td>For 2 months, the Gln Group received 1/3 DN (0.5 g/kg/day) as a water soluble commercial preparation containing 100% Gln. CG received 1/3 DN (0.5 g/kg/day) as a water soluble WP preparation with 70% protein, 14% carbohydrate, 5% fat and minerals.</td>
<td>In both groups, there was a significant ↑ in both VCR and LMR, showing improvement in IP. However, the change in plasma Gln levels in both groups was not significant.</td>
</tr>
</tbody>
</table>

Table 2: Synthesis and Main Outcomes of IBD Glutamine Supplementation Studies.

Figure 1: Study selection process flowchart.

Table 2: Synthesis and Main Outcomes of IBD Glutamine Supplementation Studies.
Discussion

The integrity of the intestinal barrier is essential for nutrient absorption and good health in humans and animals. Mechanically, the intestinal barrier is known to be maintained and regulated by gene expression and by environmental and dietary factors associated with several signaling pathways [15,21]. Any change in this barrier in the intestinal mucosa is related to increased intestinal permeability and the development of multiple gastrointestinal diseases such as IBD. Wang et al. [21] demonstrated that glutamine acts precisely in maintaining the mucosa as an intestinal barrier through the regulation of gene expression and proteins involved in cell proliferation, differentiation, apoptosis, protein turnover and antioxidant property. Additionally, glutamine also acts in the regulation of the immune system [21,22]. Given the importance of glutamine in keeping normal cell function such as those mentioned above, it is no surprise that its supplementation has been considered and examined in the clinical setting, particularly in diseases that imply impaired glutamine metabolism [19]. Thus, with several important physiological roles, glutamine is a very promising functional amino acid for the protection and maintenance of the intestinal mucosa against IBD-related atrophy.

A number of IBD animal experiments have shown that glutamine supplementation is able to protect the intestinal mucosa, increasing the possibility of glutamine use to support human patients. In one of these experiments using mice with sodium dextran sulfate-induced colitis, oral glutamine supplementation (41.7 g/kg diet; 10 days) resulted in mitigated colonic inflammatory reactions [23], as well as increased small intestine intraepithelial γδ T cell expression [24]. In another experiment [25], mice with trinitrobenzenesulfonic acid-induced colitis receiving dietary glutamine supplementation (20 or 40 g/kg; 2 weeks) showed decreased production of pro-inflammatory cytokines, including TNF-α and IL-8, bacterial translocation, and inflammation with injuries. In this latter experiment, by Ameho et al. [25], the investigators recognized that, despite the animal model findings, extrapolating the findings to the human situation is relevant for a better response to IBD treatment. Soubia et al. [26] found that oral glutamine supplementation (3% in drinking water) improved abdominal radiation-induced mucosal injury and reduced bacterial translocation in the intestinal mucosa of mice. Glutamine injection (0.75 g/kg BW) in sepsis-model mice improved sepsis-induced inflammatory reactions by modulating intestinal intraepithelial lymphocytes [27,28].

Given these positive results in animal models, human studies have been conducted to support the effectiveness of glutamine supplementation in improving disease status. Sido et al. [29] found that, regarding intestinal diseases, CD patients have low plasma and cell glutamine concentrations and reduced glutaminase enzyme activity in the mucosa. These observations led to the hypothesis that glutamine supplementation would improve clinical outcomes [29]. Garcia-de-Lorenzo et al. [22] observed that glutamine-enriched diets revealed improved immune aspects in trauma patients and improved mucositis in post-chemotherapy patients. The authors of this trial determined the amount of glutamine required for better clinical outcomes: 21 g glutamine/day for 28 days for CD, and 42 g glutamine/day for 21 days for short bowel syndrome [22].

Similarly, Den Hond et al. [30] developed a double-blind study using 21 g glutamine/day or glycine placebo at the same dose for a period of four weeks. The objective was to assess whether oral glutamine supplements could restore increased intestinal permeability in CD patients. However, there was no restoration of impaired permeability in CD [30]. A randomized clinical trial conducted by Benjamin et al. [31] showed that glutamine supplementation (0.5 g/kg BW; 2 months) in remitting CD patients reduced intestinal permeability and improved local tissue morphology. In conclusion, this study suggested that glutamine is effective for clinical improvement of CD patients [31]. Given this difference in results from these two studies, both glutamine dosage and duration of administration may influence the clinical outcome, since the route of administration was the same in both.

According to Akobeng et al. [5], a high glutamine diet (42% amino acid content) showed no significant differences between the two groups in the proportions of patients who achieved remission within four weeks. Perhaps, if they had used a lower glutamine concentration, different results would have been achieved [3]. This is due to the fact that the study conducted by Shinozaki et al. [32] suggests that excess glutamine may worsen intestinal inflammation. This study examined the effects of different enteral nutrition glutamine concentrations on trinitrobenzensulfonic acid-induced colitis in mice. Mice were randomized into one of three treatment groups: G1, glutamine-free elemental diet; G2, an elemental diet with 12% amino acid content as glutamine; and G3, elemental diet with 24% glutamine. After five weeks, G3 mice had significantly more intestinal inflammation than G1 and G2. G2 mice had less damage than G1 mice. The investigators concluded that excess glutamine may have a deleterious effect on trinitrobenzensulfonic acid-induced colitis, a model of Crohn's colitis [32].

Similarly, in a study by O'Dwyer et al. [33], it was shown that when 2 g glutamine per 100 mL of parenteral solution was administered to male Wistar mice, the improvement in total body nitrogen retention was greater than in animals receiving 0 or 3 g glutamine per 100 mL. It appears from these studies that there may be an optimal glutamine concentration that is beneficial in IBD and that when this concentration is exceeded, glutamine supplementation may actually be detrimental [33]. The reason for this is believed to be the formation of Nitric Oxide (NO), of which glutamine is a precursor, which may indirectly contribute to tissue damage in CD. More than 25% of metabolized glutamine in the intestine is released as citrulline. Citrulline is converted to arginine, a key substrate for NO synthesis, the production of which contributes to tissue injury and inflammation. CD, UC and glutamine are known to increase NO production by immune cells [5].

However, glutamine is known to influence cytokine production by various cell types in vitro. In a study by Coëffier et al. [34], the objective was to evaluate the effect of glutamine on pro- and anti-
inflammatory cytokine production via human duodenal biopsies cultured during experimental stimulation of the inflammatory bowel response in order to counteract the exacerbation of the inflammatory process. Increasing concentrations of 0.5 to 10 mM glutamine were found to decrease in vitro production of pro-inflammatory cytokines, IL-6 and IL-8, and increase production of anti-inflammatory cytokine IL-10 by the human intestinal mucosa. This study was conducted in an organ culture model with stimulation of pro-inflammatory cytokine production by IL-1b, mimicking some characteristics of pre- and pro-inflammatory cytokine production (IL-1b, IL-6, IL-8 or TNF-α) that are increased in IBD [34]. It is known that in IBD, including both UC and CD, dysregulation of the immune and inflammatory response is the main pathophysiological feature [35].

Novak et al. [36] conducted a meta-analysis of 14 randomized controlled trials comparing the use of glutamine supplementation in surgical and critically ill patients. Glutamine supplementation was associated with lower mortality risk (HR 0.78; 95% CI: 0.58-1.04), lower infectious complication rate (HR 0.81; 95% CI: 0.64-1.00) and shorter hospital stay (-2.6 days; 95% CI: -4.5 to -0.7). This benefit was seen mainly in patients receiving high doses (>0.2 g/kg/day) of parenteral glutamine; parenteral glutamine was associated with a significant reduction in mortality (HR 0.71; 95% CI: 0.51-0.99). These data suggest that glutamine supplementation improves the outcome of critically ill patients, mainly through a reduction in infectious complications [36]. Supported by these data, parenteral glutamine supplementation and a dosage of 0.2-0.5 g/kg/day are recommended for critically ill or injured patients [37].

Two trials were included in the review – by Akobeng et al. [5] and Ockenga et al. [38]. Although the results of these studies did not support the hypothesis that glutamine supplementation may be useful in active CD, both studies were limited by small samples, and time may have been too short for a better analysis of glutamine benefits [39]. For the primary endpoint, the punctual estimate for the hazard ratio (0.80) suggests that patients receiving a glutamine-enriched polymeric diet were 20% less likely to have a remission compared with patients receiving the standard low-dose glutamine diet. Larger trials are needed to determine if glutamine provides any benefit for inducing CD remission [39].

Although some studies have shown favorable effects, the clinical efficacy of glutamine supplementation in intestinal disease remains a conflicting issue [5], and data on IBD patients are still limited and controversial [40]. There is currently insufficient evidence to allow definitive conclusions about the efficacy and safety of glutamine in inducing CD remission. Data from two small studies – by Akobeng et al. [5] and Ockenga et al. [38] – suggest that glutamine supplementation may not be beneficial in active CD, but these results need to be interpreted with caution as they are based on a small number of patients [39]. Thus, there is a need for high-quality adequate nutrition randomized controlled trials to investigate the efficacy and safety of glutamine in inducing CD remission [39].

A decrease in glutathione concentration has been described in intestinal tissues of CD patients [41]. However, the study by Akobeng et al. [41] considered it surprising not to find a significant change in serum glutathione concentrations in the group of active CD children who received glutamine supplementation, since glutamine is a precursor in the glutathione synthesis, an important intracellular antioxidant. However, again, due to the small study sample size, no definitive conclusions should be drawn, as larger studies are needed to investigate this important issue [41].

Several factors should be considered, such as short-term glutamine administration during an outbreak phase, which could have a greater impact on outcomes than in other phases. Therefore, a need for a well-controlled clinical trial is reiterated with a population of sufficient size to determine the efficacy of glutamine supplementation in intestinal diseases [5].

Moreover, it is believed that IBD pathogenesis may also be associated with an imbalance in the intestinal microbiota, with a predominance of pathogenic bacteria and relative scarcity of protective microorganisms. Therefore, manipulating the microbiota composition would represent a great physiological and non-toxic way to prevent and treat IBD [40].

Conclusion

According to the results, we concluded that glutamine supplementation in IBD does not cause patients any harm. Nevertheless, both intestinal permeability and modulation of immune and inflammatory response were improved, thus confirming the efficacy of glutamine in IBD. Although these strategies are very promising and appear to be useful in some contexts, further clinical studies are needed to firmly establish the relevance of glutamine supplementation in IBD. Thus, further research is needed to determine the optimal dosage, duration, route and method of administration for better use of this amino acid by the enterocytes and for maintaining homeostasis.

References