Clinical Reviews & Cases

High Energy Trauma In Relation To the Genesis of Non-Union in Tibial Shaft Fractures

Guzmán-Juárez LA¹, Galindo-González GS², Hernández-Romano P³, Hernández-Culebro J³ and Torres-Hernández RM^{3*}

¹*MD* Trauma and Orthopaedic surgeon at the Specialty Hospital 14 IMSS, UMAE 189, Veracruz, Mexico; adjunct professor of the Orthopedics and Traumatology specialty course at IMSS UMAE 189, Veracruz, Mexico.

²*MD Trauma and Orthopaedic surgeon at the High Specialty Hospital of Veracruz, Mexico.*

³MD Clinical research, Mexico.

*Correspondence:

Rosa María Torres Hernández, MD Trauma and Orthopaedic surgeon at the Specialty Hospital 14 IMSS, UMAE 189, Veracruz, Mexico; adjunct professor of the Orthopedics and Traumatology specialty course at IMSS UMAE 189, Veracruz, Mexico.

Received: 07 Aug 2023; Accepted: 13 Sep 2023; Published: 20 Sep 2023

Citation: Guzmán-Juárez LA, Galindo-González GS, Hernández-Romano P, et al. High Energy Trauma In Relation To the Genesis of Non-Union in Tibial Shaft Fractures. Clin Rev Cases. 2023; 5(2): 1-4.

ABSTRACT

Objective: To determine the relationship of high-energy trauma with non-union of the tibial shaft fractures.

Material and Methods: Observational, retrospective and cross-sectional study that included patients with a diagnosis of tibial non-union with a history of high-energy trauma; high-energy trauma was assessed in relation to the genesis of non-union in tibial shaft fractures; the relationship between both variables was determined. Data were analyzed using measures of central tendency and X2 test.

Results: A total of 201 patients were obtained in total tibial shaft fractures from 2014 to 2018 (5 years), both of high and low energy trauma, female sex 42 patients (20.89 %), male 159 patients (79.10 %), with an average of 36.9 years of age; total non-union in all patients 37 patients (18.40 %), the external fixator in non-union in 17 patients (45.94 %), patients with plaque and posterior non-union with high energy trauma in 10 patients (27.02 %). Non-union was recorded with high-energy trauma at 55.22 % and 44.77 % low energy trauma with a statistical significance of p = 0.00058 and an X2 of 11.82 (RM = 23 and 95 % CI 21.6-25.4).

Conclusions: High-energy trauma is related to the genesis of non-union of any type in tibial shaft fractures.

Keywords

High-energy trauma, Non-union, Shaft fractures of tibia.

Introduction

High-energy trauma produces the transfer of a large amount of energy between two or more bodies occurs from an accidental event that acts in three spheres: the object, the subject and their organs; According to the amount of this energy and its magnitude, events endanger life, a limb or an organ. According to the World Health Organization and the CDC, more than nine people die every minute from injuries or acts of violence and 5.8 million people of all ages and economic groups die each year from unintentional injuries and acts of violence [1], we must take into account that trauma represents 12% of the global burden of disease [2]; vehicular collisions (traffic accident trauma) cause more than one million deaths each year and about 20-50 million significant injuries, making it the leading cause of death from trauma, worldwide [3,4]. Currently more than 90% of vehicular collisions occur in developing countries and mortality from trauma is expected to rise dramatically by 2020 because of an 80% increase in current rates of the number of vehicular accidents in income countries medium and low. High-energy shaft tibial fractures are more frequently associated with vehicular accident trauma, in some studies, it is said that this type of high-energy trauma occurs in run over patients and that it is the most common fracture genesis mechanism (up to 59.2%) [4,5]. Treatment of tibial shaft fractures is governed mainly by the extent of the injury association to the soft tissues of the tibial shaft area [5]. An exposed fracture is predictive of a high risk of non-union, mal-union and of reoperation. They can be related to the presence of long-term non-union, as dictated by its classifications, after 9 months of absence of union of the shaft fracture traces once the corresponding surgical treatments are established [6-10]. The objective of the study was to determine the relationship of high-energy trauma with the genesis of non-union of tibial shaft fractures.

Material and Methods

This study was carried out at the High Specialty Hospital of Veracruz, with duration of 6 months to carry it out. Our universe of patients consisted of all patients with a shaft tibial fracture, including the files with said diagnosis, in addition to the classification of high-energy trauma from Snoek, A. from the Medical Center Alkmaar, Alkmaar, and The Netherlands with the following characteristics:

HIGH ENERGY TRAUMA CRITERIA [7]

- Accident in a motor vehicle with a speed > 60 km / h (37 mph)
- Motor vehicle accident in which the vehicle was involved in a rollover
- Person ejected from the vehicle
- Pedestrian hit by a vehicle with a speed > 10 Km / h (6.2 mph)
- Cyclist hit with a speed > 20 Km / h (12.4 mph)
- Hit by motorized vehicle at a speed > 30 Km / h
- Drop from height > 5 meters (16.4 feet)

As inclusion criteria we had patients with records that met the following characteristics: records of patients 18 years of age or older, of indistinct gender, with shaft tibial fracture, treated surgically, at the Regional Hospital of High Specialty of Veracruz, in the period from 2014 to 2018, with a complete file and with a minimum follow-up of 9 months.

Exclusion Criteria

Patients treated conservatively, who were underage patients and who did not have a full 9-month follow-up. As elimination criteria, we only had incomplete files.

Only two of our study variables were taken, the dependent one, which was non-union, and on the other hand, our independent variable that was high-energy trauma. The files of the patients with the following inclusion criteria, age over 18 years, gender indistinct, With tibia fracture, Attended surgically, At the *"Hospital de Alta Especialidad de Veracruz"*, complete file, with a minimum follow-up of 9 months.

Results

An observational, retrospective, cross-sectional and analytical study was carried out in patients with the diagnosis of shaft tibial fractures, and of which we intend to observe the relationship of high-energy trauma with non-union genesis in this type of fracture and trauma.

Within the statistical data, we obtained 201 (100 %) patients with shaft tibial fracture in their initial diagnosis from the year 2014 to 2018 (5 years), both high and low energy trauma, we obtained that the female sex had 42 patients, which corresponds to 20.89 %, and within the male sex, 159 patients were obtained, of which corresponds to 79.10 % of the total, the age of the patients was

Among these patients, high-energy fractures correspond to 111 (55.22 %), of low-energy 90 (44.77 %); total patients with highenergy non-union 30 (14.92 %), total patients with low energy non-union 7 (3.48 %), total patients without non-union but with high-energy trauma 82 (40.79 %), total of patients without nonunion but with low energy trauma 82 (40.79 %). Within 100% of all patients with a tibial shaft fracture, 65 patients (32.33%) underwent osteosynthesis with a locked medullary nail to the tibia, in 72 patients (35.82%) osteosynthesis with a tibial plate, 63 patients (31.34%) with osteosynthesis with external fixator; in 164 (81.58%) of all of them the stability of the fracture was sufficient for its consolidation, and only in 37 patients (18.40%) the stability was insufficient, for which the subsequent observation was required if the consolidation was performed, but when see that 9 months after it, the non-union was not consolidated and the nonunion was generated, another surgical treatment is decided to be able to carry out the consolidation plus the autologous osteogenic contribution to the non-union site and also rethink the type of biomechanical principle and also the type of implant according to the type of non-union to which the patient was affected.

Among all the patients with a tibial shaft fracture (201 = 100 %), we found 37 patients with non-union (18.40 %); Of all the patients with non-union of the tibia, we found that there were non-union patients with high energy trauma and surgery with an external fixator in 17 of them (45.94 %), patients with non-union with low energy trauma and surgery with an external fixator in 5 patients (13.51%), patients with non-union with high energy trauma and plaque surgery 10 (27.02%), patients with non-union with low energy trauma and plaque surgery in 1 (2.7%), patients with non-union with high-energy trauma and surgery with a blocked centromedullary nail in 1 (2.7%), and non-union patients with low-energy trauma with surgery with a blocked centromedullary nail in 1 (2.7%) (Table 1).

 Table 1: Treatment of non-union in tibial shaft fractures in high-energy and low- energy trauma.

Non-union	High energy trauma	Low energy trauma
External fixator	17 (45%)	5 (13.5%)
Plate	10 (27.02%)	1 (2.7%)
Endomedullary nail	1 (2.7%)	1 (2.7%)

Non-union was recorded with high-energy trauma in 55.22 % and 44.77 % with low energy trauma with a statistical significance of p = 0.00058 and a X2 11.82 (OR = 23 and 95 % CI 21.6 -25.4) (Figure 1).

Discussion

In our study, it was confirmed that high-energy trauma is related to the genesis of non-union of any type in tibial shaft fractures; however, we must remember that the type of biomechanical principle and the configuration of the fracture will always dictate its definitive treatment. High-energy trauma, related to surgery with insufficient biomechanical principle according to what the fracture

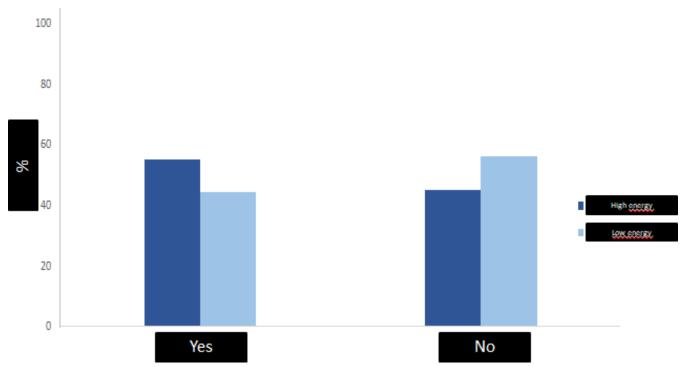


Figure 1: Non-union in tibial shaft fractures in high-energy and low-energy trauma.

indicates from its diagnosis, with a poorly applied or inadequate implant, leads to the genesis of non-union after 9 months of followup of the patient. It was observed that the percentage of non-union genesis with the external fixator as the definitive treatment has high presentation rates, compared to osteosynthesis with a plate and ultimately with the centromedullary nail, which is the treatment of choice for this type of fracture [1,2,3,9].

According to Snoek et al.. 2013 [7], the criteria for cataloging highenergy trauma serve as a guideline to always prioritize their needs in an emergency service, and subsequently check with the other services the subsequent treatments that patients require and the protocol of agreement must be kept to pathologies that endanger the life of the patient. The characteristics of our patients include the majority of those with high-energy trauma, who also had the criteria proposed by Snoek in his article to classify patients in the emergency department in the Netherlands as inclusion criteria. From here, we were able to observe that according to this, we were able to obtain significant patients with such characteristics for the study that allowed us to screen the information to identify those patients who may have complications long after having had the accident [7]. The threshold to be able to discern between patients who can be taken to a lower limb amputation and those who must undergo other procedures such as bone grafts, vascularized grafts, among others, according to classifications such as that of MESS, which includes certain parameters to be able to decide the definitive treatment in this type of patients [11]. Bosse et al., 2001, found that atients with high-energy trauma to the lower limb present challenges in their treatment, despite taking into account the reconstruction or rehabilitation of the affected limb of the patients since it is related to the patient mortality and high hospital costs [10].

In another study, Camporro-Fernández et al, 2015, comment on the treatment of Gustilo and Anderson grade IIIB and IIIC open tibial fractures with microvascularized free flaps, comment that debridement and bone stabilization were performed from day 1 of the injury, where they had to be performed from 1 to 3 of them until their wound coverage, having an average of 9.3 days of soft tissue coverage in the injury, obtained primary consolidation in 23 cases (47%) of the patients and had 94% of the legs saved, and a close relationship between traumatologists and plastic surgeons is recommended for the treatment of these patients, and they believe that adequate coverage with microvascularized flaps is key to obtaining consolidation, without infection, of these types of fractures. Affected were males in their study (43 males = 86 %, 6 females = 14 %), as in this research study [6].

In our cases, we only perform debridements and in some cases decortication to be able to carry out the consolidation of the fractures, we do not perform any microvascularized flap, which must be performed and considered in the patients and another study to be able to carry out better treatment and prevent patients from leading to non-union. According to these authors, non-union was one of the late complications of high-energy trauma, in addition to brain problems such as head trauma, pulmonary contusions, rib fractures, fractures elsewhere in the skeleton, both appendicular and axial, etc. which should have priority to safeguard the lives of patients, according to Advanced Trauma Life Support (ATLS) [3].

References

- 1. Jorge A. Aviña Valencia, Graciela Gallardo García. High energy trauma. México, D.F: Alfil. 2011.
- 2. Víctor Cuacuas Cano, Mónica Escobar Martínez, Juan Luis

Torres Méndez, et al. High energy trauma and its systemic inflammatory response. Ortho-tips. 2008; 4: 39-50.

- 3. American College of Surgeons. Comite on Trauma. ATLS Chicago. 2012.
- Charles M. Court-Brown, James D. Heckman, Margaret M. McQueen, et al. Rockwood and Green's fractures in adults. Philadelphia: Wolters Kluwer. 2015.
- 5. Nandra, R, Grover L, Porter K. Fracture non-union epidemiology and treatment. Trauma. 2015; 18: 3-11.
- Camporro-Fernández D, Ontaneda-Rubio A, Castellanos-Morán M. Treatment of Gustilo grade IIIB-IIIC open tibial fractures with microvascularized free flaps. Ibero-Latin American Plastic Surgery. 2015; 41: 283-293.
- 7. Snoek A, Dekker M, Lagrand T, et al. A clinical decision model identifies patients at risk for delayed diagnosed injuries

after high-energy trauma. European Journal of Emergency Medicine. 2013; 20: 167-172.

- 8. Stefanopoulos PK, Mikros G, Pinialidis DE, et al. Wound ballistics of military rifle bullets. Journal of Trauma and Acute Care Surgery. 2019; 87: 690-698.
- 9. Paryavi E, Stall A, Gupta R, et al. Predictive model for surgical site infection risk after surgery for high-energy lower-extremity fractures. Journal of Trauma and Acute Care Surgery, 2013; 74: 1521-1527.
- Bosse MJ, Mackenzie EJ, Kellam JF, et al. A prospective evaluation of the clinical utility of the lower-extremity injuryseverity scores. Journal of Bone and Joint Surgery - Series A. 2001; 83: 3-14.
- 11. Fox CJ, Kreishman P. High-energy trauma and damage control in the lower limb. Seminars in Plastic Surgery. 2010; 24: 5-10.

© 2023 Guzmán-Juárez LA, et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License