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ABSTRACT
Historically, pulse wave velocity (PWV) has been used to measure vascular stiffness, but is limited in its utility 
when certain vascular disease states are present, such as aneurysm or iliac stenosis. PWV can therefore only 
provide reliable assessment of global vascular stiffness in limited vascular pathology. Speckle tracking is a method 
of post-hoc ultrasound image analysis that can measure vascular stiffness in a more comprehensive manner. 
Evidence from in vitro as well as in vivo studies has validated these techniques in the assessment of strain, 
distensibility, modulus, and stiffness index (β) in the carotid arterial system. Unfortunately, despite the well-
established correlation between vascular stiffness and cardiovascular morbidity and mortality, standard vascular 
laboratory ultrasound protocols do not include stiffness assessment. Herein, we present evidence in favor of 
integrating speckle tracking into carotid artery duplex protocols to measure vascular stiffness that can be utilized 
in medical management to modulate cardiovascular risk.

*Correspondence:
Jean Marie Ruddy, MD, Associate Professor of Surgery, Division 
of Vascular Surgery, Medical University of South Carolina, 30 
Courtenay Drive, MSC 295, Charleston, SC, Tel: 843-876-8568, 
Fax: 843-876-4413. 

Received: 10 May 2023; Accepted: 17 Jun 2023; Published: 22 Jun 2023

Keywords
Arterial stiffness, Speckle tracking, Vector velocity imaging, 
Carotid ultrasound, Cardiovascular risk.

Introduction
Vascular stiffening results from alterations in the cellular and 
extracellular elements of the vessel wall due to age, hemodynamic 
forces, inflammation, and pathologic cell signaling, and is a 
biomarker of increased risk for cardiovascular morbidity and 
mortality [1-8] Evidence from the Rotterdam study demonstrated 
increased aortic stiffness was an independent predictor of 
heart disease and stroke in patients that otherwise were healthy 
[7]. Arterial stiffness has also demonstrated significant direct 
relationships with myocardial infarction, heart failure, and all-
cause mortality [1,4-6].

Vascular stiffening may be clinically recognized as an increase in 
systolic blood pressure and widening of pulse pressure [8], but 

pulse wave velocity (PWV) has been the most common means 
of measuring vascular stiffness and can demonstrate increased 
values with age related development of arteriosclerosis [2,9]. 
Cardiovascular risk and all-cause mortality, in particular, increase 
as much as 15% each with a 1 m/s elevation in PWV [5,10]. 
Quantification of PWV can be compromised by several common 
cardiovascular disease states, including AAA and peripheral 
arterial occlusive disease [11,12], so pursuance of a more reliable 
technique, with fewer confounding comorbidities, can amplify 
access to vascular stiffness measurements and potentially direct 
medical therapy titration in clinical scenarios known to promote 
stiffness, such as hypertension.

Speckle tracking is a tool involved in ultrasound image analysis 
and can directly measure vascular stiffness [2,13,14]. This tool 
overcomes the limitations of PWV by measuring local vascular 
stiffness, even when pathology is present [15]. Speckle tracking 
has been investigated as a tool in measuring vascular stiffness 
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and its relationship to different disease states, including aging 
[16-18], hypertension [19,20], diabetes [20], pre-eclampsia [21], 
Takayasu’s arteritis [22], and atherosclerosis [23,24]. Speckle 
tracking also has substantial evidence for its use in the carotid 
artery [25-28], with evidence directly involving the use of the 
technology in the carotid artery in the presence of vascular disease 
[24,27,29]. Increased vascular stiffness in this setting is identified 
as abnormal measurements of circumferential strain, elastic 
modulus, distensibility, compliance, and stiffness index [24]. This 
offers the potential to integrate speckle tracking and these stiffness 
metrics directly into already existed carotid ultrasound protocols 
as an evidence based tool.

Stiffness of the carotid artery has a direct relationship to 
cardiovascular morbidity and mortality [30]. An elastic modulus 
of greater than 1 MPa has significantly higher cardiovascular 
mortality out to 25 months [31,32]. Other important investigations 
(Table 1) that use ultrasound to measure local carotid artery stiffness 
parameters have shown increased carotid artery stiffness in patients 
with coronary artery disease [33,34], diastolic heart dysfunction 
[35], and those with cardiovascular inflammatory markers, CRP 
and BNP [36], demonstrating the increased cardiovascular risk 
of patients with elevated carotid artery stiffness. The objective of 
this review is to promote the use of speckle tracking for vascular 
stiffness measurement as an integral component of routine carotid 
artery ultrasound protocols, with the goal of offering a more 
comprehensive assessment of a patient’s cardiovascular risk.

Assessing Vascular Stiffness
Ultrasound is already an integral component in the diagnosis, 
management, and surveillance of carotid artery disease. Protocols 
capture images in B-mode to assess arterial morphology, Color 
Doppler to visualize laminar versus turbulent flow, and Doppler 
waveforms for a spectral analysis of flow velocity across the 
cardiac cycle [37]. The ability to visualize dynamic changes to 
vessel wall dimensions is utilized to calculate stiffness metrics. 

M-mode vessel diameters may be measured across the cardiac 
cycle, collecting corresponding points of systolic and diastolic 
blood pressure to generate a pressure-diameter relationship that 
facilitates quantification of stiffness metrics [15,38-43]. Applying 
this concept to the carotid artery, investigators were able to capture 
distensibility, compliance, pressure-strain elastic modulus, and 
Young’s Modulus in a series of healthy patients [38]. Age-related 
changes in each parameter corresponded to increased vascular 
stiffness [38]. Similar methods of manual M-mode calculations of 
vascular stiffness have demonstrated a correlation to post-mortem 
findings of stiffness [41-43]. In such a study, stiffness index 
measured via M-mode diameter changes relative to blood pressure 
strongly correlated with the atherosclerotic grade measured 
via post-mortem histological analysis [41]. Ultimately, these 
techniques provide a mathematical backbone to calculate stiffness 
parameters via ultrasound, but they require manual measurements 
that limit seamless integration into current ultrasound protocols.

Speckle Tracking
Speckle tracking is a form of semi-automated ultrasound image 
analysis that can be used offline after image acquisition to assess 
vascular wall mechanics, and ultimately calculate any stiffness 
parameters without the need for manual calculations. Software 
is used to identify acoustic tissue markers within the ultrasound 
images and track across the duration of the ultrasound image. 
Speckles are identified along the vessel wall, and motion is tracked 
independent of any other variable, thereby enabling analysis 
of ultrasound images and vascular wall motion in an angle-
independent manner (Figure 1) [2,14,24]. Vector velocity imaging 
is a software-integrated tool used in speckle tracking ultrasound 
image analysis to evaluate multiple directions of deformation 
at the same time, and has proven particularly advantageous in 
the carotid artery and the aorta [13,15]. The technique plots the 
location of a designated ‘kernel’ within a region of interest across 
multiple ultrasound images over time. As the location of the kernel 
is tracked across images relative to the same region of interest, a 

Table 1: Primary literature assessing carotid artery stiffness and how it relates to cardiovascular outcomes.
Study # of patients Follow-up Outcomes Analysis
Blacher et al. 79 25+/-7 months Cardiovascular mortality Kaplan-Meier and log rank analysis in E>1 MPa vs E<1 MPa in ESRD patients
Stork et al. 367 48 months Cardiovascular mortality Cox regression, mortality predicted by number of plaques and elastic modulus

Gaszner et al. 250 N/A Local carotid PWV, PWV 125 CAD vs 125 healthy patients, T-test showed increased PWV and local 
PWV in patients with CAD

Shroff et al. 55 N/A Stiffness index Pearson’s correlation coefficient demonstrated strong relationship between carotid 
stiffness index and age and vascular inflammatory markers BNP and CRP

Kim et al. 104 N/A Circumferential strain, strain rate, 
CIMT Strain and strain rate significantly lower in patients with CAD

Vriz et al. 92 N/A Elastic modulus, stiffness index, 
CIMT

Multivariate analysis demonstrated correlation between carotid stiffness and 
diastolic heart dysfunction

Catalano et al. 47 N/A Circumferential strain, CIMT, 
stiffness index

Compared outcomes between three cardiovascular risk groups, where risk 
groups were calculated via the CUORE project criteria, strain significantly 
different between groups

Saito et al. 130 N/A Circumferential strain, stiffness 
index, PWV

Compared healthy (n=90) to hypertension (n=40), T-Test shows significantly 
lower circumferential strain in hypertensive group

Yang et al. 100 N/A Circumferential strain, strain rate, 
PWV

Young vs older individuals, segmental strain showed changes in younger group 
that PWV did not detect

Rosenberg et al. 29 N/A Circumferential strain, strain rate, 
stiffness index

18-35 year-old group vs 55-75 year-old group, strain and strain rate were 
significantly higher in the younger group compared to older group
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multidirectional analysis of deformation across the cardiac cycle 
can be constructed [44]. This technology allows for the evaluation 
of discrete kernels or segments of kernels relative to one another, 
increasing the analysis power of the tool [18,25]. Studies 
validating an optimal frame rate of 60 to 110 frames per second 
have been performed with measurements done in both the long 
and short axis of carotid arteries [14]. Using vector mathematics, 
the displacement of kernels can be calculated to produce strain 
values [27], and stiffness parameters may be derived in different 
directions, including radial, circumferential, and longitudinal.

Speckle tracking can also be beneficial because it enables 
quantification of multiple mechanical parameters with defined 
stiffness relationships, all from a single image dataset, providing 
comprehensive analysis of vascular remodeling. Vessel wall 
strain can be represented as a percent change in diameter between 
systole and diastole, therefore strain decreases with increased 
vascular stiffness [2,23,25]. Integrating pressure to derive the 
stiffness index (β) can be calculated by taking the natural log of 
the ratio between the systolic and diastolic blood pressure, and 
then dividing by the circumferential strain [2,23]. Carotid artery 
circumferential strain and stiffness index demonstrate a clear 
negative correlation such that increases in arterial stiffness result 
in decreased circumferential strain [13]. Distensibility represents 
the strain per unit pressure and is often derived by dividing strain 
by pulse pressure [2,23,25]. Like strain, distensibility will also 
decrease with increased vascular stiffness, as a stiffer artery will 
displace less under constant pressure conditions. Elastic modulus 
is an inherent mechanical property used in material science that can 
be applied to vessel wall mechanics, described as stress divided by 
strain, that can be calculated by the change in pressure over the 
change in diameter between two points, often across the cardiac 
cycle [2,23]. Because of this multi-functionality, speckle tracking 
is well-suited for application to various vascular structures in the 
assessment of stiffness.

Applying Speckle Tracking in Carotid Artery Ultrasound
The carotid artery is an accessible, easy to evaluate arterial bed 
where ultrasound is currently utilized to detect atherosclerotic 
plaque, but substantial evidence supports the application of 
ultrasound derived stiffness parameters to the carotid artery [27]. 
For instance, stiffness metric validation studies comparing carotid 
artery duplex in human subjects to known standard controls of 
polyvinyl models perfused by pulsatile pumps have demonstrated 
that speckle tracking can effectively estimate strain against a 
standard in the short-axis plane [26]. Furthermore, speckle-
tracking analysis of ultrasound images obtained on the polyvinyl 
phantom models was similar to the reference strain applied to the 
model measured by sonomicrometry, suggesting the use of carotid 
speckle tracking in human subjects is feasible [26].
 
Ultrasound derived stiffness parameters are able to identify 
subclinical atherosclerosis [24,45]. This is extremely important 
to appropriate risk stratification in healthy patients, and speckle 
tracking derived stiffness metrics can see changes in vascular 
stiffness of the carotid artery even in this population [18]. 
Circumferential strain normalized to pulse pressure is significantly 
different between cardiovascular risk groups and is effective at 
identifying early signs of vascular disease in healthy individuals 
at low cardiovascular risk [23]. Additionally, modulus better 
determines differences between healthy and hypertensive patients 
than PWV [18,28], and had less inter-observer variability than 
stiffness index, which is manually calculated as opposed to speckle 
tracked [28]. Other evidence concludes that circumferential strain 
measured via speckle tracking is better than manual measurements 
of stiffness because it accounts for the entire circumferential 
movement of the wall, instead of just diameter changes [17]. 
Furthermore, ultrasound derived carotid stiffness parameters using 
speckle tracking are also automated and significantly reproducible 
[23], simply requiring analysis of transverse or longitudinal B-mode 
image loops. Overall, patients with risk factors for subclinical 
atherosclerosis appear to benefit more from stiffness assessment 
via speckle tracking than other forms of risk stratification. 

Figure 1: Images representing speckle tracking with vector velocity imaging of the murine abdominal aorta: (A) longitudinal view of the artery in 
Bmode, (B) speckle set-up to track the walls of the artery, (C) vector velocity images as the blood vessel expands in systole, and (D) the strain curve 
output across the cardiac cycle.
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As previously stated, vascular stiffness in patients with risk factors 
for arterial disease, including age, hypertension, coronary artery 
disease, and diabetes, has been studied as a means of evaluating 
cardiovascular risk [20,23,27-29]. For example, arterial stiffness 
in the aging carotid artery has been measured via speckle tracking 
and demonstrated clear decreased strain values in older individuals 
[17]. Additionally, hypertensive patients have demonstrated 
lower carotid strain and higher stiffness index than sex and age 
matched healthy controls at a single time point [20,28], and lower 
peak carotid artery strain has been detected in diabetic patients 
compared to healthy controls [20]. This is important in identifying 
patients with opportunity to intervene, as stiffness reversal 
has been demonstrated with increased exercise and lifestyle 
modification in at risk patients [46,47]. Some studies have shown 
changes in PWV with medical treatment of hypertension [47-49], 
but patients with hypertension that are treated to normotension still 
have elevated arterial stiffness markers [45,50]. Knowing which 
patients have elevated stiffness even after medical treatment would 
be instrumental in further risk stratification. There may even be 
opportunity to investigate which further treatments would improve 
this population’s stiffness parameters, and therefore cardiovascular 
risk. 

In order to effective monitor patients with cardiovascular risk, 
speckle tracking as a tool can be integrated into current ultrasound 
protocols. This should be done by obtaining mid-transverse and 
longitudinal B-mode recordings of the common carotid artery 
across the cardiac cycle, and can be done when seeing a patient 
in clinic without the need for full duplex ultrasound protocol 
images, such as color Doppler or velocity measurements. Speckle 
tracking then requires software for post-hoc image analysis, which 
can be used on standard computers used in the clinical setting. 
Most evidence suggests a modulus greater than 1 MPa indicative 
of elevated cardiovascular risk, with values around 0.5 MPa as low 
risk [23,24,31]. High risk values of circumferential strain have been 
reported around 2.4%, and normalized to pulse pressure around 4%, 
while low risk values are reported around 5.5%, and normalized to 
pulse pressure around 11.4% [23,24]. There is a notable amount of 
variability in how these values are reported, however, in addition 
to other stiffness parameters, so further intensive investigation into 
the values that correspond to an abnormally stiff carotid artery is 
warranted. Ultimately, we recommend performing this assessment 
on patients with cardiovascular risk factors that could potentially 
have subclinical vascular disease, where stiffness parameters 
would be able to offer insight into the need for aggressive risk 
factor modification. 

Conclusion
Overall, the evidence supporting the utility of speckle tracking 
technology in the carotid artery suggests integration into routine 
vascular ultrasound will aid in the evaluation of treatment of 
patients at risk of developing vascular disease. This has the 
potential to influence medical management of systemic disease 
states such as hypertension or diabetes. Further validation of 
parameter cutoffs and in-clinic protocol development will increase 

the ease of adoption and will allow clinicians to better prevent 
progression of cardiovascular disease.
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