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ABSTRACT
Background: Image reconstruction with under-sampled data is usually achieved by an iterative algorithm, which 
minimizes an objective function. The objective function commonly contains a data fidelity term and one or more 
Bayesian terms. A popular Bayesian term is the total variation (TV) norm of the image.

Methods: This paper suggests an addition Bayesian term that is generated by a neural network. This neural 
network is essentially a classifier. This classifier can recognize the artifacts caused by the incomplete data. This 
classifier is trained by patient images reconstructed by complete and incomplete data sets. This newly introduced 
Bayesian term is referred to as the CNN score, which is a real number in (-∞, ∞).

Results: Patient studies show the good correlation between the CNN score and the severeness of the artifacts due 
to the incomplete measurements.

Conclusions: A neural network can extract features from images that are suffering from incomplete measurements 
and convert the features into a CNN score. An iterative image reconstruction algorithm can be developed to 
minimize this CNN score to suppress the artifacts in the reconstructed image. 
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Introduction
The main motivation for acquiring incomplete data in medical 
imaging is to reduce radiation dose, as in x-ray CT (Computed 
Tomography), or to shorten the acquisition time, as in MRI 
(magnetic resonance imaging). However, image reconstruction 
using incomplete data may result in poor image quality, with severe 
artifacts. The traditional analytic image reconstruction methods do 
not work well when data is under-sampled. Iterative algorithms 
are commonly used for image reconstruction with incomplete 
data, similar to other compressed sensing problems. The iterative 

algorithm is used to optimize an objective function, while the 
objective function can incorporate some prior information that is 
not in the measurements.

The objective function for an iterative algorithm typically includes 
a data fidelity term and one or more Bayesian terms. The data fidelity 
term encourages the forward projections of the reconstruction to 
match the measurements, while a popular Bayesian term uses the 
total variation (TV) norm of the reconstruction [1,2]. Minimizing 
the TV norm encourages the image to be piecewise constant [3-5].

Machine learning methods have shown promising results in 
reconstructing medical images with less noise and fewer artifacts. 
However, the training of a neural network requires a large amount 
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of input/output pairs. In this paper, we assume that good-quality 
patient images are not available for incomplete measurements. 
Thus, we cannot use an end-to-end neural network to map 
incomplete data to its corresponding reconstruction. Despite the 
lack of good images for the bad measurements, we believe a 
neural network can still recognize the difference between an image 
reconstructed with a full dataset and an image reconstructed with 
an incomplete dataset.

We do not use machine learning methods to directly reconstruct 
images with incomplete data because we are concerned that the 
neural network might miss critical details or add spurious details to 
the reconstructed image [6,7]. Instead, the main goal of this paper 
is to train a convolutional neural network (CNN) that classifies a 
'good' reconstruction with a full dataset and a 'bad' reconstruction 
with an incomplete dataset. We then modify the trained CNN 
to serve as a Bayesian term in an iterative image reconstruction 
algorithm.

Methods
When measurements are incomplete, as in few-angle tomography, 
the imaging problem becomes underdetermined, and naïve filtered 
backprojection (FBP) reconstruction algorithm produces severe 
artifacts even when the data is noiseless. These artifacts are 
sometimes referred to as angular aliasing artifacts [8]. To reduce 
these artifacts, we need to gather as much prior information as 
possible to assist the reconstruction algorithm by restricting the 
solution space. This is why Bayesian terms are important in the 
objective function for image reconstruction when the measurements 
are incomplete. The TV norm is helpful in suppressing noise and 
regularizing the inverse problem, even if the object is not piecewise 
constant [3].

To further restrict the solution space, if possible, we need 
additional information. Neural networks may be able to discover 
more desirable features of a 'good' image that differ from the TV 
norm and to discover more undesirable features of a ‘bad’ image. 
We propose training a CNN to classify 'good' and 'bad' images. 
We believe that obtaining a regression neural network is harder 
than obtaining a classification neural network. If a neural network 
is to be used to convert a ‘bad’ image to a ‘good’ image, this is a 
regression task. Such a neural network requires a large number 
of bad/good image pairs to train. Each pair must come from the 
same patient in the same scanning position. On the other hand, to 
train a classifier, we do not need any same-patient, bad/good image 
pairs, because the label in a classifier is an integer which represents 
either ‘good’ or ‘bad.’

The CNN used in our study comprised two convolutional layers, 
each with 3×3 convolution kernels and a ReLU (rectified linear 
unit) activation function. The first convolutional layer had 40 
channels, while the second had 20 channels. Our images were 
128×128 and incomplete projection data consisted of 45 views 
over 180° with a detector containing 128 detection bins. The 
imaging geometry was parallel beam.

The third layer was a global average pooling layer, which 
calculated the average value of each channel output as a scalar. 
These 20 scalars were then flattened into a 20-element vector. The 
final layer calculated the weighted sum of these 20 elements, and a 
sigmoid function was used to output the classification results, with 
a binary output of 1 for a 'bad image' and 0 for a 'good image'. The 
CNN adopted in this paper is shown in Figure 1.

After training the CNN, the sigmoid function in the output layer 
was discarded, and the CNN output became a real value in the 
range of (-∞, ∞). This modified CNN was used as a Bayesian term 
in the objective function for image reconstruction. The objective 
function is expressed as:

F = α1||AX−Y||2 + α2CNN(X) + α3TV(X)    (1)

Where X is the reconstructed image represented as a vector, Y is the 
measurement vector, A is the projection matrix, TV(X) is the TV-
norm of X, and CNN(X) is the modified CNN output value when 
the input is X. In (1), α1, α2 and α3 are three positive parameters 
set by the user. The objective function F can be negative since 
CNN(X) may be negative. To optimize the objective function (1), 
we used an iterative steepest descent algorithm.

Results and Discussion
The CNN classifier was trained using 4756 patient CT images. Half 
of them were reconstructed with sinograms of 45 views, which 
were considered as incomplete datasets with label ‘1.’ The other 
half were reconstructed with 360 views, which were considered 
as complete datasets with label ‘0.’ The image size was 128 × 
128. The validation split was 10%, and 200 epochs were used. 
The optimizer was ‘adam,’ and the loss function was ‘binary-
crossentropy.’ No bias terms were used in the CNN because they 
did not improve the classification accuracy.

Figures 2-5 present four CT results of iterative image reconstruction 
with the patients not seen in the CNN training. In these four 
figures, part (a) shows the gold standard that was obtained by the 
full data set. In part (b), the angular aliasing artifacts are severe 
for the images generated by the 45-view data. The results from 
the proposed method are shown in part (c), where the artifacts are 
reduced. Part (d) shows the curves of CNN score, CNN(X), versus 
the iteration numbers. The larger values of CNN(X) correlate to 
severer artifacts; the smaller values of CNN(X) correlate to less-
severe artifacts.

The number of iterations was 600 for all reconstructions. The three 
parameters were chosen as α1 = 0.00000001, α2 = 0.002, and α3 
= 0.00000000001. The artifacts are somewhat reduced by using 
the Bayesian terms in the objective function. Unfortunately, the 
artifacts are not completely removed. This unfortunate situation 
may be caused by many reasons. One cause may be that our neural 
network model is not adequate to capture the important artifact 
features resulted from insufficient measurements. Another cause 
could be that the function CNN(X) is not convex, and it is difficult 
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Figure 1: The CNN proposed in this paper to act as a Bayesian term, CNN(X).
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Figure 2: Patient #1. (a) True image. (b) Reconstruction without Bayesian terms. (c) Reconstruction with Bayesian terms. (d) Curve of CNN(X) vs 
iterations; the final CNN(X) is 5.5.

(a) (b) (c) (d)

Figure 3: Patient #2. (a) True image. (b) Reconstruction without Bayesian terms. (c) Reconstruction with Bayesian terms. (d) Curve of CNN(X) vs 
iterations; the final CNN(X) is -1.4.

(a) (b) (c) (d)
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Figure 5: Patient #4. (a) True image. (b) Reconstruction without Bayesian terms. (c) Reconstruction with Bayesian terms. (d) Curve of CNN(X) vs 
iterations; the final CNN(X) is 1.9.

(a) (b) (c) (d)
Figure 4: Patient #3. (a) True image. (b) Reconstruction without Bayesian terms. (c) Reconstruction with Bayesian terms. (d) Curve of CNN(X) vs 
iterations; the final CNN(X) is -4.3.

Figure 6: Feature images from the second convolutional layer for an image in the training set using 45 views.
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to reach the global minimum while in the training epochs. Still 
another cause might be the theoretical limitation in the sense that 
when the system AX = Y is severely underdetermined, the prior 
information is not strong enough to shrink the solution space small 
enough to get a useful solution.

In Figure 6, we display 20 feature images from the output of the 
second convolutional layer. The input image was obtained by 45 
projection views and contained severe artifacts. It seems that the 
CNN is an edge detector that extracts the object boundaries. The 
edge detector can also catch the streaking artifacts. If the image 
has many streaking artifacts, the CNN score, CNN(X), tends to 
have a large value. This observation may explain how the CNN 
score can be used to assist image reconstruction.

Conclusion
When measurements are under-sampled, the system AX = Y is 
under-determined. In this case, prior information about the image 
becomes important to restrict the solution space, so that the 
solutions in the shrunk solution space are useful in practice. 

The TV norm has been shown to be helpful. It would be nice, in 
addition to the TV norm, if we can find some other prior information 
about the image. We are hoping that a neural network can capture 
more features of the artifacts than the TV norm can. This paper 
suggests that a neural network classifier be used to catch some 
features of the artifacts, because neural networks, in general, are 
excellent at extracting features from a class of objects and can be 
trained to recognize artifacts. The main goal of this paper is to use 

a neural network recognizer as a Bayesian term in an objective 
function for iterative image reconstruction with under-sampled 
data. The feasibility of this approach has been demonstrated in 
some patient CT studies.
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