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ABSTRACT

Gastric cancer is one of the most prevalent and deadly cancers in the world. One of the biggest factors for this
disease is Helicobacter pylori (H. pylori), infecting roughly half of the world’s population. However, there is a
limited understanding of the H. pylori infection at single-cell level. In this study, single-cell RNA-Seq datasets
from intestinal metaplasia samples were analyzed.

Using bioinformatics methods, the cells were clustered and cell types were identified with cell type specific marker
genes. For each cell type, H. pylori infected cells were compared with control cells using statistical analysis
in order to find significant genes and pathways. Then, machine-learning (ML) approaches were used to build
models to distinguish H. pylori positive and negative cells, and the severity of infection.

1t is found that H. pylori infection is linked to an increase in enterocytes and a decrease in pit mucous cells (PMCs).
These changes may promote disease progression from gastritis to gastric cancer. Significantly differentially
expressed genes and several pathways such as the MHC class II antigen presentation pathway and the PD-1
pathway were identified. The random forest-based models achieved an accuracy of higher than 97% for detecting
positivity and severity.

We identified the specific type of the host cells along with signaling pathways related to H. pylori infection and
signaling pathways leading to gastric cancer. We demonstrated that ML methods are useful in detection of the
affected by H. pylori PMC cells.

Keywords Helicobacter pylori; IMS: Intestinal Metaplasia, Severe; IMW:
Helicobacter pylori, Machine learning, Cancer, PMC cells. Intestinal Metaplasia, Wild; MHC: Major Histocompatibility

Complex; ML: Machine Learning; NGS: Next-Generation
Acronyms and Abbreviations Sequencing; NMD: Nonsense-Mediated Decay; PCA: Principal

FDR: False Discovery Rate; GMC: Gland Mucous Cell; H. pylori: Component Analysis; PD-1: Programmed Death-1; PMC: Pit
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Mucous Cell; RF: Random Forest; RNA-Seq: RNA Sequencing;
scRNA-Seq: Single Cell RNA Sequencing; tSNE: t-Distributed
Stochastic Neighbor Embedding.

Introduction

Gastric cancer is one of the deadliest and most widespread cancers
in the world, killing an estimated 738 000 people in 2018 [1]. One
of the biggest factors for this disease is the bacteria Helicobacter
pylori (H. pylori) [2], which was discovered in 1982 by Marshall
and Warren [3] and was found to be linked to gastric cancer in
1994. These bacteria shockingly infect around half of the world’s
population, but most infections are asymptomatic [4]. Besides
gastric cancer, H. pylori also causes many other issues, such as
gastritis, ulcers, allergies and much more. Despite knowing what
possible symptoms may occur from this infection, it is still near
impossible to predict what exactly will happen when a certain
individual is infected due to factors such as bacterial strain and
human/environmental determinants. There are many known
mechanisms in a H. pylori infection, with the most well-known
being production and injection of CagA protein to the target cell,
the first identified bacterial protein correlated in cancer [5]. Most
strains of H. pylori contain the CagA gene, with around 60-70
percent of western strains and almost all eastern strains containing
it. Additionally, not all CagA are the same, with the protein
structure in eastern and western strains being slightly different.
They differ in their EPTYA and CM motifs, which are segments of
the protein repeated throughout the sequence.

CagA is delivered into the cell by a structure called a T4SS syringe,
which is formed from many adhesins such as BabA, BabB and
SabA [5]. After entry, CagA attaches to the plasma membrane and
has two different mechanisms in which this is achieved, depending
on the polarity of the cell. If the cell is polar, the central region
is responsible for binding. If the cell is nonpolar, the C-terminal
region is responsible for binding. Then, the EPIYA-C/EPIYA-D
regions interact with the SH2 domain of SHP2, which is an
enzyme, which then triggers signaling also triggered by growth
factors. Because of this, the cell elongates into what is called a
hummingbird phenotype, leading to increased cell motility, which
contributes to tumor metastasis. When comparing western and
eastern CagA, eastern CagA is a greater risk for gastric cancer
than a western strain with one EPIY A-C motif, but the strains with
multiple EPIYA-C pose a greater risk [6].

RNA-Seq is a method to study the gene expression in biological
samples using next-generation sequencing (NGS) technology [7].
RNA-Seq can be used to identify the differentially expressed genes
in disease samples so that disease biomarkers can be identified,
and used to find pathways of interest that can be used to develop
drugs that treat certain diseases and conditions. In RNA-Seq
projects, the sequences are first mapped to the human genome or
the genome of the species from which the samples were taken.
Then the expression of the genes are calculated and genes from
different groups of samples, such as control and disease groups,
are compared using statistical methods so that significantly up- and

downregulated genes can be found. Because traditional RNA-Seq
studies the bulk of tissue samples, the gene expression measured
by RNA-Seq is a mixture of the gene expression of different cell
types in the sample. It is difficult to study heterogeneous systems
made from different cell types. In recent years, a new technology
called single cell RNA-Seq (scRNA-Seq) has been developed
[8]. scRNA-Seq is the most advanced method to study gene
expressions, because it can detect the RNA expression of each
individual cell, with a single experiment able to study hundreds of
thousands of cells. In a sScRNA-Seq study, each cell is captured in
a small droplet and a molecular barcode is attached to all RNAs
in the cell. Afterwards, the gene expression for each cell can be
identified using the barcode [9].

The analysis of scRNA-Seq data is similar to the bulk sample
RNA-Seq data. However, there are several unique analyses, which
are specific only to sScRNA-Seq. First, the cells are clustered using
gene expression data. Second, the cell type is identified according
to cell type specific gene markers. Currently, there are many
available bioinformatics methods for the analysis of scRNA-Seq
data. The Seurat package is one of the most popular tools [10].

scRNA-Seq is more powerful than the traditional RNA-Seq, because
it can find biomarkers or pathways for specific cell types. But since
this is a very novel technology, there are not many existing research
projects that study gastric cancer and H. pylori using this method.
Zhang and coauthors, used scRNA-Seq to investigate gastric cancer
samples [11]. This study found and compared cell types between
tissues from different stages of cancer and found interesting
biomarkers between different stages of cancer. We analyzed the
published scRNA-Seq datasets to identify gene and pathway
markers for H. pylori infection for different cell types. Machine-
learning models were constructed for the prediction of H. pylori
infection and classification of severity of infection.

Methods

We analyzed the scRNA-Seq datasets [11]. The gene-expression
datasets GSE134520 of this study were downloaded from the
NCBI GEO database. These datasets have samples from many
tissues, including non-atrophic gastritis, chronic atrophic gastritis,
early gastric cancer, and intestinal metaplasia. Only the intestinal
metaplasia samples (Table S1), which have both H. pylori positive
and negative samples, were selected for our analysis. Intestinal
metaplasia is an early transformation that can lead to gastric
cancer. Therefore, it can be useful to study the H. pylori related
transformation to cancer. We used wild intestinal metaplasia
(IMW) and severe intestinal metaplasia (IMS) datasets for analysis.

The scRNA-Seq data were analyzed in R using the Seurat package
[10]. The raw data were first trimmed to remove data points without
a cell, with multiple cells or with dead cells. Data points with less
than 200 genes were considered without a cell. Data points with
more than 20 000 total expression counts were considered multiple
cells. Data points with more than 20% mitochondrial genes were
considered dead cells. The expression data were normalized and
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Figure 1: tSNE plot of cells by Cell type.

then the 2000 most variable genes were identified using the Find
Variable Features from the Seurat package. The expression data were
further scaled using the Scale Data command. For cell clustering,
a principal component analysis (PCA) was first performed on the
variable genes. Then cells were clustered by the Find Neighbors
and the Find Clusters command from the Seurat package. After
cell clustering, the cell types were identified using cell type specific
marker genes described in previous study, listed in Table S2
[11]. For each cell type, significant differentially expressed genes
between the H. pylori positive and negative cells were identified
using the Wilcoxon Rank Sum test [12]. The p-values were adjusted
using the Bonferroni method in R [13]. Significantly upregulated
genes (adjusted p-value < 0.05) in H. pylori cells were uploaded to
reactome.org to find the significant pathways that are enriched with
these genes [14,15].

Machine-learning models were then built to predict H. pylori
positive and negative cells. For each cell type, significant genes
with adjusted p-value < 0.05 were used to train random forest (RF)
models [16]. The Caret package [17] was used to optimize the
parameters and calculate the model accuracy using a 5-fold cross
validation repeated 5 times, from which the average accuracy
was taken from. This was done using the train Control function
from the Caret package. The default value of 500 trees were used
in the RF models. A grid search was performed to optimize the

mtry parameter, which refers to the number of variables used in
each node in a tree. A value of m#ry = 8 had the highest accuracy
of 97.48 and a kappa value of 94.12. Also, using only the H. pylori
positive cells, RF models were trained using the Caret package to
predict the severity of H. pylori infection, distinguishing severe vs
wild intestinal metaplasia cells. The same procedures of 5-fold cross
validation and the grid search for mtry parameter were used, and with
a mtry value of 14 the accuracy was 98.21 and the kappa was 95.89.

Results and Discussion

After cell clustering, 26 clusters were created (Figure S1). A cell
type was then assigned to each cluster (Figures S2-S20, Table S3)
by the expression of cell type specific marker genes (Table S2). The
cell types are shown in Figure 1 and number of cells are listed in
Table 1. Enterocyte and PMC are the most abundant cell types in
these samples. There are more enterocytes in the H. pylori positive
samples than the negative samples, but there are less PMCs in the
positive samples. PMCs were selected to build machine-learning
models. The intention of using PMCs is for the detection of
H. pylori infection in the early stage of gastric cancer. Enterocytes
are intestinal absorptive cells, which are found in patients with
intestinal metaplasia. Prior to the intestinal metaplasia stage,
enterocytes are rare in gastric tissues. However, PMCs are common
in gastric tissues for all patients. Therefore, PMCs-based machine-
learning models can be applied to a wider range of patients. There
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are also large differences shown in Table 1 with Gland Mucous
Cells (GMCs) and Stem cells. Despite this, however, we chose to
not use these two types of cells in finding results. The difference in
stem cells could be explained by the clusters assigned to GMCs/
Stem Cells, as if we assume that the majority of cells in that cluster
are stem cells, then the amount of stem cells would be relatively
equal. GMCs were not used because they are not well studied and
are very similar to PMCs.

Table 1: Number of cells for each cell type in H. pylori positive and
negative samples.

Cell type Number and perce'ntage Number and perce'ntage
of cells (H. pylori +) of cells (H. pylori —)

Enterocyte 2275 (32.57%) 1453 (19.78%)
Pit mucous cell (PMC) 869 (12.44) 1858 (25.30%)

B Cell 665 (9.52%) 645 (8.78%)
Stem Cell 186 (2.66%) 764 (10.40%)

T Cell 357 (5.11%) 593 (8.07%)
Fibroblast 340 (4.87%) 411 (5.60%)
Gland mucous cell (GMC) 559 (8.00%) 123 (1.67%)
GMC/Stem Cell 566 (8.10%) 88 (1.20%)
Indeterminate 91 (1.30%) 520 (7.08%)
Endothelial 223 (3.19%) 213 (2.90%)
Goblet 252 (3.61%) 157 (2.14%)
Proliferative/Stem 267 (3.82%) 128 (1.74%)
Macrophage 178 (2.55%) 111 (1.51%)
Mast cell 83 (1.19%) 108 (1.47%)
Smooth muscle cell (SMC) 51 (0.73%) 75 (1.02%)

G Cell 22 (0.32%) 97 (1.32%)

(a) PMCs.
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Both enterocytes and PMCs are epithelial cells. All our
samples are from intestinal metaplasia. Intestinal metaplasia is
a transformational stage where some of the cells that make up
the lining of the stomach are replaced by the cells found at the
lining of the intestine. Enterocytes are intestinal absorptive cells,
kind of epithelial cells, which lines the inner surface of the small
and large intestines. Therefore, H. pylori possibly plays a role in
the development of intestinal metaplasia or could transform the
intestinal metaplasia in a more severe stage tissue.

The significant genes for the Enterocytes and PMCs are shown in
the heat maps in Figure 2. In these two heat map figures, the top
50 significantly differentially expressed genes in H. pylori positive
(y) and negative (n) cells are shown, with the more significant
genes on top. From these heat maps, we can also see that there
are more PMCs in negative than positive samples, and there are
more enterocytes in positive than in negative samples. In PMCs,
several upregulated genes in positive samples, including LCN2,
CD74, REG1A, BPIFB1, PIGR, HLA-DRB1, REG3A, MT-CO2,
HLA-DRA, HLA-DPBI1, and HLA-DPA1 were found. Some of
these genes were also upregulated in the enterocytes. Significant
genes were also identified for some additional cell types, which are
shown in the heat maps (Figures S21, S22).

For each cell type, the upregulated genes in H. pylori positive cells
were uploaded into the Reactome website (https://reactome.org/)
and the enriched pathways for these genes were identified (Figures
S23, S24). The immune system has the most significant pathways,

(b) Enterocytes
3 &

il
NI '\HI\I‘“HIIHHI \”I ‘I‘\ ”MII“I | ’IH

ACTBE
~DAc | IHH|

AcrATz I \|III lll |Il| ‘ I

IFI27 I\II\HII H | H‘IH\ AR ‘ Iyl
CYP2D6

YWHAZ H
MALAT1 | ' I 41 ||H |
TI4SF4 HIII IIIIHII [ 1L | I\I [
RPS24 |

RPS27
RPL21
ACTGA
COXTE
HLA-DRE
TSPANS

III‘IIH IHII\ \I \IHHH L0

H“I\thlll[llllli I“\III' I \‘ ‘l\IIHI I|III | ”w mwwmmﬂwmM’I“Imw.\w

MAL2 Identity
RPL26 | | v
- R bl WMW ﬂhll'ﬁ”d c
euet WA R | (LU HH‘HI JIEE AT

IFITM3 | -
RBP2 Expression

2

i,

cLony [NITTNTIR \I
II I L AR AL I \IHIII\III\I\IIII 0

PR
o

Bl IIHIIl‘ll‘lll‘lI H|||\| H\”I‘\‘I |I \ | \IIIII\IIrH‘\I\IH|I||I‘\”HHHlHHHIMl\\ ”\Iﬂ :2
] H H I\ ‘ :
Loz [ | III I\ i ‘\‘H ‘ [ ] III | | | \ I "H| “Mﬂ Nltmwllf
’\\I|"|| IIH‘ III"|"H \m

[ I|HH I
LA R T I\ 1L N \|I | HI\\III\IIIIIII‘IIIIINIIIIIIIIIIIII|IIIIIIH

H llh\ l M‘Hllllwml\ll I I‘ JHEL II Iy | an I‘\l il

HSD17811

| (I IIH \ ! |
SCP2 \I

uasF1 [ |

PMP22 |IH 1IN} ||||||| AR T | \
TPD52 |

VDAC1

Figure 2: Two heat maps showing the top 50 most significantly differentiated genes in PMCs and enterocytes. In each heat map, the cells at the left side under
the red bar denoted by letter “y” and the cells at the right side under the green bar denoted by letter “n” are H. pylori positive and negative cells respectively.
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Figure 3: Important predictor for detecting H. pylori positivity (a) and severity (b) of infected PMCs.

followed by signal transduction. The pathways that are enriched

in both the H. pylori infected PMC and Enterocyte cells include:

e MHC class II antigen presentation (p-value = 1.81x107', false
discovery rate (FDR) = 8.23x107'")

o Plays a role in immune protection, and reacts with urease
produced by H. pylori,

e PD-1 signaling (p-value =2.22x107'¢, FDR = 2.51x107")

o Responsible in stopping antitumor responses in the immune
system;

e Nonsense-Mediated Decay (p-value =
1.44x1071%)

o Starts the destruction of mRNA with premature termination
codons.

1.11x107'%, FDR =

Machine-learning methods were applied to predict H. pylori
infection using the scRNA-Seq data. Here, the gene expression
data from a single cell type were used to build machine-learning
models. Among the identified cell types (Table 1), enterocytes
and PMCs are the most abundant in these samples, making
approximately 45% of all the cells. Therefore, models based on
enterocytes or PMCs can be trained from a larger number of cells
to achieve better prediction accuracy. In this study, the PMCs were
selected to build machine-learning models. The reason for using
PMC:s is for the detection of H. pylori infection in the early stage
of gastric cancer. Enterocytes are the intestinal absorptive cells,
which are found in patients with intestinal metaplasia. Prior to the
intestinal metaplasia stage, enterocytes are much less abundant
in gastric tissues. However, PMCs are common in gastric tissues
for all patients. Therefore, PMCs-based machine-learning models
could be applied to a wider range of patients.

The scaled expression data for significantly differentially expressed
genes between H. pylori positive and negative PMCs with adjusted
p-value < 0.05 were used to train and validate machine-learning
models. Random forest (RF) technique is a powerful machine-
learning method based on an ensemble of decision trees built from

a randomly selected subset of predictors. RF models were trained
to classify H. pylori positive and negative PMCs. The procedures
for building the RF models and the 5-fold cross validation are
mentioned in Materials and Methods section. The final RF
model has an accuracy of 97% in classifying H. pylori positive
and negative PMCs. The important genes in the model are shown
in Figure 3a. The y-axis in the graphs represents genes and the
x-axis represents the mean decrease Gini, which is a measure of
how important a variable is in the model. The topmost important
predictors, in the order of decreasing Gini, are LCN2, MT.CO?2,
REG3A, PIGR, BPIFBI and CD74, which are found among the
highly expressed genes in H. pylori positive cells. Next, using
the similar machine-learning method, predictive models were
built to classify the severity of H. pylori infection. Here only the
data of H. pylori positive PMCs were used. Cells from IMS and
IMW were considered severely and non-severely infected. The
scaled expression data for significantly differentially expressed
genes between the IMS and IMW with adjusted p-value < 0.05
were used to train and validate RF models. The final model also
reached an accuracy of 97%. Among the important genes of this
model (Figure 3b), the top ones are HLA-DRBS, 1GJ, HLA-C and
FABP1, which is a different set of genes from the previous model
for predicting H. pylori infected PMCs.

Conclusion

In this project, we analyzed the scRNA-Seq datasets from patients
infected by H. pylori and controls with Intestinal metaplasia, an
early-stage transformation that may lead to gastric cancer. We
used R Studio, Seurat package, Reactome and bioinformatics tools
to analyze these datasets. The cell types were identified, and the
number of cells were compared between the H. pylori positive
cells and controls. Significant genes were identified between
the H. pylori positive and negative cells. We also found several
significant pathways, which could also be used to elucidate the
mechanisms of H. pylori impact on cancer development.

H. pylori may affect the development of intestinal metaplasia or
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perhaps make it more severe. Additionally, the difference in PMCs
concentrations may suggest that cells in H. pylori positive subjects
may be vulnerable to stomach acid since there are less mucous-
producing cells. Another explanation could be that the reduction
in PMCs may be a way to combat the H. pylori that hide in the
epithelial layer in order to escape gastric acid.

H. pylori produces urease to protect itself from stomach acid and
the urease binds to MHC class II antigens on epithelial cells when
first colonizing a host. When binding, a signal will be sent out
which causes an increased rate of apoptosis to epithelial cells
lining the stomach. This not only will help H. pylori infection but
may also lead to the stomach lining being more vulnerable to other
factors, including cancers and diseases [18].

PD-1 is another pathway that is highly enriched in H. pylori
positive cells. This pathway is responsible for inhibiting immune
responses, and because of this plays a large part in both cancer
treatment and infection. There have been multiple studies showing
that inhibition of PD-1 is effective in improving immune response
towards cancer, so since the H. pylori samples have this pathway
enriched, it would put the samples more at risk of getting cancer [19].

The NMD (Nonsense-Mediated Decay) pathway is involved in
making sure mRNA is of good quality. However, tumor cells
can use this pathway to their advantage by destroying tumor-
suppressing mRNA, and adjusting the activity of NMD to increase
their rate of growth. This may cause H. pylori positive samples to
have higher chances of getting cancer [20].

scRNA-Seq technology and machine-learning methods together
could be used for early detection of gastric cancer and diagnostics
of cancer progression with high accuracy.
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Supplementary Materials
Acronyms and Abbreviation: GMC, gland mucous cell; PMC, pit mucous cell

Table S1
Sample metadata.
Sample Subject H. pylori infection
IMW1 P5 y
IMW2 P6 n
IMS1 P7 y
IMS2 P7 y
IMS3 P8 n
IMS4 P8 n

Figure S1. Cell clusters. The plot was made using the TSNEPIot function in the Seurat package (Ref S1, #10 in the text).
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Table S2

Marker genes for different cell types according to ref S2 (#11in the text).

Cell group Cell Type Marker Gene(s)

Mucous & secretory Pit mucous cell (PMC) MUCSAC

Mucous & secretory Gland mucous cell (GMC) MUC6

Mucous & secretory Parietal cell ATP4A, ATP4B, GIF

Mucous & secretory Chief Cell PGA4, PGA3, LIPF

Endocrine G cell GAST

Endocrine X cell GHRL

Endocrine D cell SST

Immune cells T Cell CD2, CD3D,CD3E,CD3G
Immune cells B Cell CD79A,CD19

Immune cells Mast Cell TPSABI1,TPSB2

Immune cells Macrophage CD14, CD163, CD68, CSFIR
Stromal cells Fibroblasts FAP, PDPN,COL1A2,DCN, COL3A1, COL6A1
Stromal cells Endothelial cells PECAMI1,VWF,ENG,MCAM
Stem Cells Stem cell OLFM4,SOX2,LGR5,CCKBR
Myocytes Smooth muscle cell ACTA2,ACTN2,MYL2,MYH2

Proliferative cell

Proliferative Cell

MKI67,BIRC5,CDK 1

Intestinal cells

Goblet cell

TFF3,SPINK4,MUC2

Intestinal cells

Enteroendocrine cell

CHGA,CHGB,TAC1,TPHI,NEUROG3

Intestinal cells

Enterocytes

FABP1,CA1,VIL1
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Figure S2. Cell clusters colored by gene expression of PMC specific marker MUCSAC.
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Figure S3. Cell clusters colored by gene expression of GMC specific marker MUC6.
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Figure S4. Cell clusters colored by gene expression of Parietal cell specific markers GIF, ATP4A and ATP4B. Parietal cells were not detected.
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Figure S5. Cell clusters colored by gene expression of chief cell specific markers PGA4, PGA3 and LIPF.

Microbiol Infect Dis, 2022

Volume 6 | Issue 2 |9 of 19



3{} .
NI 8
w O 6
% 4
- 2
0
_30 1
-o0 25 0 25 a0
tSNE_1
Figure S6. Cell clusters colored by gene expression of G cell specific marker GAST.
GHRL
3{} u
o
w' 07 °
= 4
@ 2
0
2301
-o0 -25 0 25 a0
tSNE_1

Figure S7. Cell clusters colored by gene expression of X cell specific marker GHRL.
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Figure S8. Cell clusters colored by gene expression of D cell specific marker SST.
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Figure S9. Cell clusters colored by gene expression of T cell specific markers CD2, CD3D, CD3E and CD3G.
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Figure S10. Cell clusters colored by gene expression of B cell specific markers CD79A and CD19.
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Figure S11. Cell clusters colored by gene expression of Mast cell specific marker TPSABI.
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Figure S12. Cell clusters colored by gene expression of Macrophage cell specific markers CD14, CD163, CD68 and CSF1R.
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Figure S13. Cell clusters colored by gene expression of Fibroblasts cell specific markers FAP, PDPN, COL1A2, DCN, COL3A1 and COL6AL.
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Figure S14. Cell clusters colored by gene expression of Endothelial cell specific markers VWF, ENG and MCAM.
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Figure S15. Cell clusters colored by gene expression of Stem cell specific markers OLFM4, SOX2, LGRS and CCKBR.
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Figure S16. Cell clusters colored by gene expression of SMC cell specific markers ACTA2, ACTN2, MYL2 and MYH?2.
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Figure S17. Cell clusters colored by gene expression of Proliferative cell specific markers MKI167, BIRC5 and CDK1.
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Figure 18. Cell clusters colored by gene expression of Goblet cell specific markers TFF3, SPINK4 and MUC2.
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Figure S19. Cell clusters colored by gene expression of Enteroendocrine cell specific markers CHGA, CHGB, TAC1, TPH1 and NEUROG3.
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Figure S20. Cell clusters colored by gene expression of Enterocytes cell specific markers FABP1, CA1 and VILI.

Table S3
Cell clusters and corresponding them cell types.
Cluster Cell type

0 Enterocyte

1 T Cell

2 PMC

3 B Cell

4 Fibroblast

5 Enterocyte

6 Stem Cell

7 PMC

8 GMC/Stem Cell
9 Enterocyte

10 PMC

11 Indeterminate
12 Enterocyte

13 Enterocyte

14 PMC

15 GMC

16 Endothelial
17 Goblet

18 Proliferative/Stem
19 B Cell
20 Macrophage
21 Stem Cell
22 GMC
23 Mast cell
24 SMC
25 G cell
26 B Cell
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Figure S21. Gene expression heatmap of top 20 most differentially expressed genes in SMCs.
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Figure S22. Gene expression heatmap of top 50 most differentially expressed genes in GMCs. The cells at the left side under the red bar denoted by
letter “y” and the cells at the right side under the green bar denoted by letter “n” are H. pylori positive and negative cells respectively.
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Figure S23. Enriched pathways in H. pylori infected PMCs.
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Figure S24. Enriched pathways in H. pylori infected enterocytes.

R Code for analysis could be found at this web site: https://pastebin.com/Pf8b7USt
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