Osteoarthritis Linked to Diabetes Characterized Sharp Decreasing in Ser / Proline /PLCγ2 with Increasing PLCγ1, Where Inhibiting S6K/BTK / PLCγ2 Affect TXA2 Synthesis Cause C-Lymphocytic Leukemia

Ashraf Marzouk El Tantawi*

Biomedical Molecular Studies "Pathologies and Cancer Diseases", Canada Ontario Toronto, Goldwin Ave, Egypt Cairo Giza.

Citation: Marzouk El Tantawi A. Osteoarthritis Linked to Diabetes Characterized Sharp Decreasing in Ser / Proline /PLCγ2 with Increasing PLCγ1, Where Inhibiting S6K/BTK / PLCγ2 Affect TXA2 Synthesis Cause C-Lymphocytic Leukemia. Microbiol Infect Dis. 2022; 6(1): 1-10.

ABSTRACT

Proper S6K /BTK and PLCγ2 are main regulations for thromboxane-A synthesis, and necessary for B-cell maturations and T-cells modulations and functions.

The main factors that cause the Osteoarthritis "OA" and diabetes and linked between them are the deficiency of Ser amino acids and decreasing or down regulations of Ser phosphorylation signaling pathway which necessary for proper S6K productions, where normally the Ser phosphorylation signaling pathway is the basis of Ser /Thr phosphorylation signaling which normally necessary for proper Akt, S6K1 synthesis and necessary for RORs and IFNs synthesis and also necessary for running proper BTK and proper PLCγ2 productions, where S6K is main regulator for ATPase and for proper PLCγ1 and for PLCγ2 synthesis which necessary for bone growth and for increasing and modulating immune efficiency.

Osteoarthritis "OA" is characterized by a sharp expression in Gamma-Phospholipase C-1 "PLCγ1", with decreasing "or inhibition" in PLCγ2 "PLC beta" productions.

The increasing in PLCγ1 with Deficiency in Ser amino acids will lead to deficiency in Ser phosphorylation signaling (which is main basis for Ser/Thr phosphorylation signaling which has the main function of producing proper S6K), and decreasing in synthase activity will reflect down regulations in BTK pathways and lead to inhibition in PLCγ2 productions which will reflect diabetes (inhibition in Estrogen with the production of Androgen instead of estrogen) and can reflect early Osteoarthritis "OA" prognosis depend on the percentage of Deficiency or inhibition in basic amino acids and in basic necessary signaling pathways.

The proper S6K are so necessary for reactivating both PLCγ1&2, where phospholipase Cγ2 (PLCγ2) is activated from a variety of cell surface receptors such as Syk "S6K".

As, the B cells are promoted by the function and activities of both PLCγ1&2, as the deficiency in Ser amino acids will reflect decreasing in Ser phosphorylation pathways and then decreasing in Estrogen synthesis, with increasing in Androgen synthesis which lead to decreasing in PLCs isoforms production and lead to pathogenic diabetes problem. So T2DM is strongly connected with OA disease and both are having the same syndrome of causing their pathogenic problems, and any early step from any of those two or more similar diseases can lead to the other.

Pathogenic type 2 diabetes associated with progressive beta-cell impairment due to the mutations in the production of normal insulin which due to missing of Ser phosphorylation signaling during mTOR Ser/Thr phosphorylation pathways that reflect Inhibition in

The releasing of PS/T-Thymine -Kinase and PS/T-Cytosine -kinase chains (mTORC1) which are regulating hydrophobic amino acids synthesis which can be modified by synthetase enzymes for creating the first active gamma-subunits (upon synthetase effects) that will be modified by synthetase effect for Beta-subunit synthesis then for alpha subunits upon phospholipase effects respectively.

The previous of the releasing of PS/T-Thymine -Kinase and PS/T-Cytosine -kinase chains (mTORC1) from specifically the phosphorylations of Ser pathway is so necessary steps and mechanism for normal S6K productions, necessary for IFN-Gamma and for PLCγ1 productions, and therefore necessary for normal PLCγ2 synthesis which is necessary for B-cell activities, for T-cells modulations, for modulating anti-inflammatory steps and procedures, for thromboxane-A synthesis, and for bone growth and modulation.
Inhibition in PS/T-Thymine-Kinase and PS/T-Cytosine-kinase chains (mTORC1) productions can be the main reason for inhibition the beta subunits productions that can be the reason of decreasing in the hyperpolarization and then electrical activity will lead to decreasing in the abolition of Ca2+ which will lead to increasing in the dropping in blood pressure.

Deficiency in conversion of glutarate to glutamate and decreasing in proline biosynthesis can affect on cartilage synthesis and bone growth due to decreasing in the activities of mitochondrial OPA1 oxidations.

It's imp to note that Tyrosine phosphatase

PTPs are important regulator of chondrogenic patterning and are critical regulators of tyrosine phosphorylation that it's activity depends on Tyr, Ser synthesis (hydrophilic acids) and on JAK state signaling activities.

And so, the proline-rich tyrosine kinases regulate proper PLCs isoforms which compete for binding site at the very C terminus of fibroblast growth factor for osteoprogenitor embryonic development, and bone formations.

Synthetase is the main regulator for PLCγ1 activities followed by synthase effects for beta-subunits ("PLCγ2") productions which is able to "upregulate phospholipase activity" for alpha subunits (PLC-alpha) productions for reactivating fibroblast growth factor receptor (FGFR2) and for reactivating antigens and TLR4 productions.

Where, PLCγ1 competes for a binding site at the very C terminus of FGFR2 for embryonic development and bones growth, where, PLCs isoforms are involved in multiple stages in TLR4, interferon, and in anti-inflammatory steps.

And also, PLCγ1 recruit to CSF-1 is following imp stages for producing PLCγ2 which is necessary for activating anti-inflammatory where, IFN-γ activates PLC-γ2 via an upstream of tyrosine kinase.

The PLCγ1 and PLCγ2 (PLCs) are so imp in anti-inflammatory processes and can be considered as having the main roles of characterizing the activities of thromboxane and fibrin through re-modulating immune and T cells activities.

Inhibitions or reduction or mutations in S6K, in BTK and in the original main normal PLCγ2 productions will cause an inherent or inhibition in CXCL12 then followed by inherent or inhibition in CXCR4 then reflect inherent or inhibition in the regulation of B-cell growth, migrations, adhesions and functions.

Proline amino acids is necessary for reactivating OPA1 anabolic oxidations (started by synthetase, then synthase, then phospholipase for producing gamma "PLCγ1", then beta "PLCγ2", then alpha "PLC-a" subunits respectively) for cartilage synthesis which promote PLCγ2 synthesis necessary for bone growth including antigen and thromboxone-A synthesis.

Porpoise of Study

Understanding the main reasons for causing chronic lymphocytic leukemia "CLL" where, proper S6K /BTK and PLCγ2 are main regulations for thromboxone-A synthesis and necessary for B-cells maturation and T-cells modulations.

Also, it's important to Understand main factors that cause and link the Osteoarthritis "OA" with diabetes which are the deficiency in Ser amino acids and mutated S6K production lead to deficiency or inhibition in Ser phosphorylation signaling which normally is the basis of Ser /Thr phosphorylation signaling which necessarily for Akt, S6K1 synthesis and necessary for RORs and IFNs synthesis and also necessary for proper PLCγ2 productions, where S6K is main regulator for ATPase and for proper PLCγ2 synthesis, that I have to note that the shortage ratio of amino acids (or enzymes or steps) is the ratio that can define the degree and type of specific disease that can differ from others which can linked together with the same Syndromes of disease, and also the shortage ratio between the beta Cytokines productions and the ratio of sudden high inflammations productions "and the type of its inflammatory molecules" have to be calculated and considered related to the patients ages (whether child, youth or old ages) and the duration of the chronic disease, that some can be confused to differentiate between auto-immune disease and regular disease problems diagnosis.

That, there was a case of a child with 9-year-old who had a suspicion of loose of bone maturation and growth, and has a sudden infection in the right lung and a lack of breathing with pain. It was found that there was a pulmonary abscess in right lung, and there was a development with the appearance of an air bag or "inflammatory fluid bag" surrounding respiratory cells in right side. The occurrence of inflammations molecules and their growth was rapid enough faster than IFNs productions and faster than PLCγ2 productions due to the age of the child "Note some her regular treating doctors diagnosed her medical conditions as a type Autoimmune disease and she has weakened immunity due to sudden fast infection related to her young age".

High lights

- increasing in PLCγ1 with Deficiency in Ser, in proper S6K, and decreasing in synthase activity with inhibition in PLCγ2 will reflect decreasing in anti-inflammatory processes, reflect starting or increasing in Osteoarthritis syndromes, and also reflects the appearance of diabetes syndrome.
- proper healthy PLCγ2 are so necessary for increasing re-medulate immune efficiencies, and for re-modulate antigen and T-cells refunctions, and also proper healthy PLCγ2 production are so imp for recovery from osteoporosis and from both Osteoarthritis and diabetes.
- Where, CLL characterized by inhibition in BTK, inhibition in PLCγ2 synthesis, inhibition in main antigen synthesis, and inhibition in the proper normal Thromboxone-A synthesis which regulated mainly by PLCγ1 then IFNs production then regulated by PLCγ2 proper productions.
- Chronic lymphocytic leukemia (CLL) observed during treatment with B-cell receptor inhibitors pathway including inhibitor of Bruton’s tyrosine kinase-PLCγ2, where, CLL can be strongly linked to Osteoporosis "OA", and linked to both Osteoarthritis and diabetes too.
Keywords
Phospholipase C-1 "PLCγ1", Phospholipase C-2 "PLCγ2" necessary for anti-inflammatory steps, Osteoarthritis OA tissue cells, Osteoporosis tissue cells, Osteoclast processes, Osteoblast processes, Ser/Thr phosphorylation signaling, Deficiency in PS-/Thymine-kinases reflect mutated S6K, deficiency in PLCγ2, deficiency in B cells and T-cells modulation, and deficiency in OPA1 repair, S6K, estrogen, androgynie, JAK state signaling, Diabetes pathogenic tissue cells, Tyrosine phosphatase, PTPs, Colony-stimulating Factor-1 "CSF-1", Inositol-1,4,5-triphosphate (IP3) and Diacylglycerol, Thromboxane-A "TXA2", CXCR4, CXCL12, Pathogenic chronic lymphocytic leukemia (CLL) tissue cells, B cells and B cells receptors "BCR", Osteoprogenitor pathway, Fibroblast growth factor receptor 2 "FGFR2", Interferon regulatory factors (IRFs).

Introduction
Osteoarthritis is characterized by a sharp expression in Gamma-Phospholipase C-1 "PLCγ1", with decreasing in PLCγ2 "PLC beta" which improved by phospholipase oxidations for producing PLC alpha for proliferations and calcium entry ", where PLCγ1 was highly expressed in human OA chondrocytes [1] which is implicated processes including mitogenesis and calcium entry.

Phospholipase C isoforms (PLCs) are essential mediators for cellular signaling and metabolism. PLCs regulates multiple cellular processes including proliferations and biological bones growth by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol.

That, PLCγ1 basis of inhibition-driven autophagy of IL-1β-treated chondrocyte confers cartilage protection against osteoarthritis [2]. The only presence PLCγ1 has the ability and roles of analyzing biological molecules "Osteoclast" for expressing its own specified functions so, slightly inhibition or decreasing in PLCγ1 will decrease osteoclast and also refunctioning PLCγ1 for reactivating the expression of PLCγ2 which reduce the analyzing function of PLCγ1 and then give the priority to PLC-beta "PLCγ2" for beta-oxidations for activating anti-inflammatory processes, and for PLC-alpha production for proliferations functions which for activating osteoblast processes, bone growth, and cells proliferations.

Where, the availability of proline is necessary for activating and accelerate OPA1 oxidative processes for cartilages synthesis and also the availability of necessary hydrophobic amino acids proper synthesis "eg :Tyr, Leu, Pro, Gly, Ser, ... etc" will activate and will accelerate proper OPA1 oxidative processes which promote and activate necessary anabolic cycles for activating BTK which regulate PLCγ2 for bone growth and for modulating immune effectiveness.

The Deficiency in the conversion of glutarate to glutamate and decreasing in proline biosynthesis strongly effect on cartilage synthesis due to decreasing in the activation of mitochondrial OPA1 oxidative processes [3], also, deficiency in the mitochondrial OPA1 membrane bio-repairs can reflect deficiency in the proper S6K productions lead to deficiency in OPA1 mitochondrial repair synthetase activities lead to deficiency in OPA1 synthesize, and in phospholipase activities and their molecular structure lead to decreasing in antigens synthesis and activities that can reflect decreasing in PLCγ2 then in SIRPα1, and in TLR4 biosynthesis, that can reflect increasing in catabolic analyzing processes that can analyze the phospholipid and interstatium fluid molecules.

Method and Results
S6K /BTK and PLCγ2 are main regulations for thromboxane-A synthesis, and necessary for B-cell maturetions and T-cells modulations.

Where, it's important to Understand main factors that cause Osteoarthritis "OA" and diabetes which are the deficiency in Ser amino acids that lead to mutated S6K production due to deficiency or inhibition in Ser phosphorylation signaling which normally is the basis of Ser /Thr phosphorylation signaling which normally necessary for proper Akt, S6K1 synthesis and necessary for RORs and IFNs synthesis and also necessary for proper PLCγ2 productions.

Proper S6K productions are main regulator for ATPase, for OPA1 repair, and for BTK and proper PLCγ1 & PLCγ2 synthesis which necessary for bone growth.

Osteoarthritis "OA" is characterized by a sharp expression in Gamma-Phospholipase C-1 "PLCγ1", with decreasing "or inhibition" in BTK and in PLCγ2 "PLC beta" lead to decreasing in beta-cells and in T-cells modulations.

The increasing in PLCγ1 with Deficiency in Ser will reflect mutated S6K productivity, and in synthesize activity with inhibition in PLCγ2 that will reflect Inhibition in estrogen synthesis and androgynie synthesis that reflect diabetes problem and Osteoarthritis "OA" that we'll discuss why both diseases are connected and their causes depend mainly on availability of Ser amino acids then on the Tyr and their phosphorylation signaling pathway.

Deficiency or inhibition in the proper S6K, in Ser and Tyr amino a. synthesis, will reflect increasing in PLCγ1 with decreasing in PLCγ2 and will reflect diabetes in Osteoarthritis "OA" diseases.

Deficiency or inhibition in the proper S6K, in Ser and in Tyr amino a. synthesis in vivo "regulated by synthetase" will lead to increasing in PLCγ1 with decreasing in PLCγ2 synthesis and lead to diabetes and Osteoarthritis "OA" disease:

PLCγ1 is a protein molecules that its activity depending on Tyr phosphatase, and gamma common receptors synthesis which regulated by JAK STAT signaling, and also regulated by synthetase enzyme where synthetase is the main second enzyme in OPA1 chains after COX enzyme (followed by synthase and phospholipase respectively) and necessary for hydroponic acids synthesis for
gamma active subunits synthesis (or extraction), that synthetase enzymes is so necessary for creating signals transmission which can reactivate mTOR pathway and for re-production the active gamma subunits which upon JAK signaling will produce active receptors necessary for activating beta-subunits synthesis which upon phospholiapase will activate proliferation, and bones growth.

The PLCγ1/PLCγ2 double-deficient B cell progenitors have reduced expression of genes related to B cell lineage, IL-7 signaling, and cell cycle [4]. That the activities of both PLCγ1&2 are linked to each other and are so necessary for re-activation of B-cells maturation, where, PLCγ2 regulate the productions antigen-specific immunoglobulin necessary IgM and IgD synthesis necessary for anti-inflammatory processes, and necessary for T-cells modulations, therefore the deficiency or mutations in PLCγ1&2 will lead to decreasing in or lead to Malignant transformation in B cells that can cause mutations or inhibition in IgM and in IgD synthesis and will lead to inhibition or mutations in TXA2 synthesis that will lead to cancers as chronic lymphocytic leukemia (CLL) and can cause several other pathogenic problems as diabetes and OA diseases.

B-cells are promoted by the productions of both PLCγ1 which upon BTK will regulate PLCγ2 synthesis, where PLCγ1 synthesis mainly depends on mTOR Ser /Thr phosphorylations signaling pathways (mTS/TP) and on S6K genes synthesis "that deficiency in Ser amino acids will reflect decreasing in the productions of the two types kinases PSTT-K and PSTC-k that will lead to mutations in S6K synthesis and lead to decreasing in Estrogen synthesis with increasing in Androgen synthesis which lead to pathogenic diabetes diseases [5].

Proper S6K synthesis is depending on availability of Ser amino acids and on the production of the two kinases PSTTK and PSTCk that are so necessary for reactivating ribosomal ATPase which is necessary for repairing the mitochondrial OPA1 membrane (through regulating GTPase productions), where proper OPA1 is necessary for activates and regulating proper PLCγ1 productions and for "PLCγ2" synthesis upon synthase effect for B-cell receptor synthesis for B-cells maturation, and for anti-inflammation, then followed by creating PLC-alpha synthesis upon phospholiapase functions for promoting proliferations and bone growth through SIRPa and TLR4 productions.

In case of deficiency in mTOR Ser/Thr phosphorylation’s signaling due to deficiency in Ser phosphorylation will produce non proper mutated S6K "missing Ser hydrophobic amino acids" that will lead to diabetes pathogenic problems, and will lead to inhibition in PLCγ2 or will lead to mutated PLCγ2 in some cases depending on the percentage of Deficiency of necessary hydroponic (Tyr, leu, Pro,... etc) that will lead to inhibition in Estrogen which is the substrate for ROs pathways and will lead to increasing in Androgyne instead of Estrogen that will inhibit PLCγ2 synthesis and will lead to diabetes, and OA diseases, and can lead to cancer pathogenesis in the inhibition or mutation in TXA2 synthesis.

Pathogenic type 2 diabetes associated with progressive beta-cell impairment due to the mutations in the production of normal Estrogen which due to missing of Ser phosphorylation signaling during mTOR Ser/Thr phosphorylation pathways will lead to Inhibition or decreasing in the releasing of PS/T-Thymine -Kinase and PS/T-Cytosine -kinase chains (mTORC1) that those two kinases are depending on the availability of Ser and its phosphorylation pathway where Ser synthesis in vivo depending on synthetase which are regulate hydrophobic amino acids synthesis which can be modified by synthetase oxidations for creating the first active gamma-subunits that will be modified by synthase effect "beta-oxidation" for active Beta-subunit synthesis which necessary for "anti-inflammations" then for alpha subunits upon phospholiapase effects "alpha-oxidations" which necessary for proliferation respectively.

The releasing of PS/T-Thymine-Kinase and PS/T-Cytosine -kinase chains or (mTORC1) from specifically the phosphorylations of Ser signaling pathway is so necessary steps for the mechanism of normal and proper S6K productions which necessary for IFN-Gamma and for PLCγ1 productions, "in proper active forms" and therefore necessary for normal PLCγ2 synthesis which is necessary for B-cell activities, for T-cells modulations, for modulating anti-inflammatory steps and processes, for thromboxane-A synthesis, and for bone growth and maturation [6A*].

The inhibition in PS/T-Thymine-Kinase and PS/T-Cytosine -kinase chains (mTORC1) productions will be the main reason for the inhibition of the beta subunits productions that can be the reason of decreasing in the hyperpolarization and then electrical activity will lead to decreasing in the abolition of Ça+ which will lead to decreasing in blood pressure.

Also, the deficiency in tyrosine amino acids will prevent the production of tyrosine phosphatase which needed for the synthesis of phospholiapase C 1&2 that that promote cellular proliferation, and also reduction of and deficiency in Tyr amino acids "hydrophobic acids" will reduce or inhibit Dutons tyrosine kinases "DTK".

Now it is important to consider that proper S6K is the main regulator for PLCs isoforms synthesis which depend on S6K productions, and it has been reported that the phospholiapase Cγ2 (PLCγ2) is activated from a variety of cell surface receptors such as SyK "S6K", and BTK which phosphorylate and activate PLCγ2 [6].

S6K1 is the basis for ATPase, and GTPase where, GTPase is necessary for G-protein synthesis, for OPA1 repair and re-modulations, and for ribosomal repairs and reactivations.

As the ATPase is a regulator tool for BH4 and NO 3 productions for synthase repair and activity.
As, S6K1 is the main regulator for PLCγ1 synthesis and then for PLCγ2 synthesis upon synthase function which later will migrate for beta-cells survival upon production firstly CXCL12 then CXCR4 productions.
Also, it has been approved that T2DM is connected with OA and both are having the same reason of causing their pathogenic disease, where T2DM has a pathogenic effect on OA through 2 major pathways involving oxidative stress and low-grade chronic inflammation resulting from chronic hyperglycemia and insulin resistance [7]. Pathogenic type 2 diabetes associated with progressive beta-cell impairment due to the not normal production of insulin which due to deficiency of Ser phosphorylation pathway during mTOR Ser/Thr phosphorylation pathways that will not produce normal S6K "due to deficiency in Ser and some other necessary amino acids (mainly Ser and Tyr, Leu, Pro a.a.) then will lead to decreasing "or mutation" in the S6K productions, that will lead to Androgen instead of Estrogen where Estrogen characterized by presence of Ser in their molecules, that will lead to high ATPase productions with deficiency estrogen which is the main substrat for RORS pathway that later will promote the IFN gamma, IFN-beta, and alpha that can lead to increasing in "catabolic effects" with decreasing in the ROR pathways "anabolic process" and decreasing in proper PLCγ2 productions that reflect Ca+ precipitations and arterial hypertension.

Where, it has been reported that insulin activates the K-ATP channels of pancreatic β-cells and islets, resulting in membrane hyperpolarization, and the abolition of [Ca2+]i oscillations [8].

And, the low abolition of [Ca2+]i oscillations in the case of T2DM indicates decreasing or inhibition in PLCγ2 synthesis "that has the role of modulating inositol 1,4,5-trisphosphate-mediated calcium oscillations for bone growth". Also, decreasing in membrane hyperpolarization can give reflection of decreasing in OPAl synthase oxidations which reflect decreasing in membrane hyperpolarization.

(PLCγ1) can be reactivated by platelet-derived growth factor "GF" receptors, insulin-like GF 1 receptor (which reflect deficiency in proper cells and bones growth), but in brief PLCγ1 productions can produced and re-functioned by several active growth factor (GF) receptors through feedback and by firstly reactivating synthetase followed by synthase then phospholipase which promote growth factor activities as epidermal GF receptor [EGFR], and platelet-derived GF receptor, where due to activating GFs processes it will be responsible for increasing hyperpolarization and functioning CA throughout the synthesis of PLCs that will responsible for running the pathway of bone growth and cellular biosynthesis processes.

The main PLCγ1 proper activities is regulated firstly by proper S6K production from mTOR Ser/Thr phosphorylation pathways followed by JAK STAT signaling for producing the Tyr-phosphatase, gamma common receptors, and other necessary helical proteins receptors which adopt and activate PLCγ1&2 synthesis and activities for anti-inflammatory, for B-cells maturation, for T-cells modulation, and for bone growth and proper cellular proliferation.

PLCγ1 is a necessary Protein regulated firstly by S6K which produced from mTOR Ser/Thr signaling pathway and regulated by OPAl synthetase and then activated by JAK STAT signaling for both PLCγ1 and then PLCγ2 productions, where PLCγ2 is also regulated by BTK for proper PLCs productions for cells proliferation and bones growth.

Hydrophobic acids such as Tyrosine, Ser, proline facilitate the survival and protect proliferation processes of bones development (also can activate tumor growth in case of specific synthase dysfunction when lose or deprived of some necessary amino acids) through facilitating OPAl oxidative functions (especially when proline is available in OPAl enzymes which activate their function) and activate BTK pathways which necessary for FGFR2 gene expression for bones developments.

Where, Tyrosine amino acids increase alertness and bone development through activating tyrosine kinases, that Tyrosine phosphatases are potential therapeutic targets for fighting bone disorders [9].

Protein tyrosine phosphatase (PTP) gamma (carry−ve charge regulated firstly by synthetase gamma-oxidations) has been proposed to be an important regulator of chondrogenic patterning, where PTPs are critical regulators of tyrosine phosphorylation at multiple stages of bone development and metabolism [10].

And, proline-rich tyrosine kinases regulate osteoprogenitor cells and bone formations [11], so Tyrosine and proline (where their synthesis firstly regulated by synthetase in vivo) are regulated by PIPs and are critical regulators of multiple stages in bone development.

Tyrosine, Ser, proline are essential hydrophobic acids that produced in vivo upon the effects of synthetase enzymes on nutrients, and on inflammations molecules for running pyrimidine synthesis and production for creating for improving Gamma-subunits then beta, then alpha subunits productions.

Gamma-subunits is then moderated by JAK STAT signaling for producing their own active gamma subunits receptors (as Gamma-common and other helical proteins) which promoted by IFN gamma for activating PLCgamma, PD-1, MHC-class one and two antigens which promote the SIRPα1, and TLR4 productions for bone growth and cells developments.

PLCγ1 competes for a binding site at the very C terminus of FGFR2 for embryonic development and bones growth, where, PLC isoforms are involved in multiple stages in TLR4, interferon, and in anti-inflammation.

PLCγ1 competes for a binding site at the C terminus of fibroblast growth factor receptor (FGFR2) (which plays an important role in bone growth, particularly during development before birth "embryonic development") and is sufficient to upregulate
and activated by JAK signaling for gamma common, tyrosine modulations. and TLR4 which are necessary for proliferation and T-cells inflammations which regulate MHC class one and two and SIRPα1 in vivo for activating IFNs necessary regulatory for anti-

So, proper PLCγ1 can be considered as important tools produced by tyrosine phosphatase receptors and by phospho-tyrosine receptors "PTyr-R" for activating PLCγ2 productions and then for PLC-alpha reproduction for bone growth, for B cells maturation, and for promoting anti-inflammatory steps through activating IFNs productions for regulating MHCs synthesis which necessary for SIRPα1, TLR4, and PD-L1 productions where all are Contributing and activating the bone growth, proper anti-inflammations, T-cells modulations, and necessary cells maturation, Where, basically depend on JAK signaling for SH2B adaptor protein "that are a Tyr kinase receptor family" which necessary for BCR mediate B cells maturation [14] that, "PTyr" phospho-tyrosine.

"Which necessary for PLCs synthesis ", and for SHP1Src homology region 2 domain-containing phosphatase 1 synthesis are so imp for regulating PLCs synthesis, for reactivating IFNs and their pathways functions in anti-inflammatory processes including proliferation, B-cells maturation.

Notice that PLCγ2 BCR mediate B-cell maturation which regulated by SH2B adaptor protein so BTK is the so necessary regulatory factor for PLCγ2 production for B-cell maturation and also for modulating T-cells.

PLCγ1 is associated with numerous inflammatory diseases where firstly the productions of PLCγ1 is for acting on infections for modulating the PLCγ2 productions for running the PLCγ2 pathways for firstly anti-inflammations followed by promoting PLC alpha for proliferation, that there are considerate limits % between the amount of inflammations from its inflammatory Source and the percentage of the productions of PLCγ1, where in case of increasing in the sudden inflammation related to PLCγ1 productions will overcome in tissue lead to increasing inflammations but in case of providing the salvation through providing PLCγ2 will reflect decreasing in inflammations with increasing in anti-inflammatory processes.

PLCγ1 recruit to Colony-stimulating factor-1 "CSF-1" is following by imp stages for producing PLCγ2 which is necessary for activating anti-inflammatory

Through activating, IFNs which activates PLC-γ2 via an upstream of tyrosine kinase:
The PLCγ1 has the specificity toward colony-stimulating factor receptor (CSF-1) signaling which expressed on the cell surface that can cause the cells to proliferate and differentiate into specific blood cells, and considered as a class III receptor tyrosine kinase that associated with Neuroinflammation, where PLCγ1 is recruited to the CSF-1 receptor following exposure to the cytokine [15].

Meaning of PLCγ1 recruit to CSF-1 necessary for producing

phospholipase activity [12]. That, synthetase is the main regulator for PLCγ1 activities followed by synthase effects for beta-subunits ("PLCγ2") productions which is able to "upregulate phospholipase activity" for up regulate phospholipase activity for producing active alpha subunits (PLC-alpha) productions which responsible for reactivating fibroblast growth factor receptor (FGFR2) and for proliferation and bone growth, that it gives strong relationships to the reactivation and production of the MHC class two antigens which promote SIRPα1 and TLR4 which are having the roles of proliferation, cells modulations and T-cells modulations.

Only Synthetase enzymes in OPA1 mitochondrial membranes are having the ability of hydrolysis biological molecules, inflammations and phospholipid membranes in vivo, therefore the active gamma subunits - (regulated by synthetase) in absence of beta subunits are able to analyze cells, inflammations and biological molecules (for producing prostaglandins), where beta subunits chain contains gamma and beta "upon beta oxidations" chain that during attacking inflammations or microbe in vivo the beta subunits will protect cells while only gamma subunits (in absence of beta subunits) will analyze biological molecules, but in availability of beta and alpha chains PLCγ2 & PLC-alpha productions will have the roles of modulating and activating anti-inflammatory processes, B-cells maturation, T-cells modulations, and bone growth.

So PLCγ1 is considered as active gamma chain containing necessary hydroponic amino acids that necessary for promoting and modifying the PLCγ2 productions upon synthase effect that will modulate the increasing in anti-inflammations and modulating T-cells that can protect cells then will promote the PLC-alpha synthesis necessary for running proliferation and bone growth which also appears that strongly connected to promoting the activating of both SIRP-a and TLR4 productions which are having the same roles as PLC-alpha of running proliferation and bone growth.

Where, Some PLCs isoforms are involved in multiple stages in TLR4 and interferons regulatory factors (IRFs) synthesis [13]. Where it indicate the involvement of PLCs in the activating interferons regulatory tools (IFN-gamma, IFN-beta and IFN-alpha) which responsible for promoting MHCs "class one and two", SIRPα1 and TLR4 where both SIRPα1 and TLR4 are responsible for proliferation, bone growth and T-cells modulations. Also indicating that the availability of S6K1 and PLCγ1 in proper molecular structure are so necessary for activating IFNs and for TLR4.

So, proper PLCγ1 can be considered as important tools produced in vivo for activating IFNs necessary regulatory for anti-inflammations which regulate MHC class one and two and SIRPα1 and TLR4 which are necessary for proliferation and T-cells modulations.

The PLCγ1 are produced upon OPA1 synthetase oxidative effects and activated by JAK signaling for gamma common, tyrosine Receptors, and other helical protein receptors productions which regulate PLCs isoforms activities and other genes biosynthesis "eg: antigen, PD-1, SIRP-gamma, and PLCγ1 productions", that PLCγ1 are containing so necessary regulatory basic amino acids for promoting antigen synthesis, for SIRPα1, for TLR4 biosynthesis, and then for PD-L1 biosynthesis.
Phospholipase Cγ2 is critical for Dectin-1-mediated Ca2+ flux. PLCγ2 synthesis activate osteoblast but PLCγ1 production with inhibition in PLCγ2 will activate osteoclast (OC) by inhibiting re-modulating inositol 1,4,5-trisphosphate-PLCγ1&2 is modulating a variety of cellular pathways including osteoclast (OC) differentiation.}

Where, PLCγ2 production is important for running osteoblast and inhibiting osteoclast, where the increasing in PLCγ2 productions with inhibition in PLCγ2 will activate osteoclast (OC) by inhibiting re-modulating inositol 1,4,5-trisphosphate "which mediated calcium oscillations and the up-regulation of the nuclear transcription factor NFATc1" [21].

That, inositol 1,4,5-trisphosphate and diacylglycerol production require phosphoinositide synthase (PIS) for modulating OC differentiation through regulating transient receptor potential (TRP) channels which need hydrolysis of equires hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP) resulting in the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).

So, PLCγ1 recruited to CSF-1 for re-activating IFNs synthesis and for beta-cells maturation and activities. Where, PLCγ2 synthesis synthase activities for promoting firstly PLCγ1 production followed by PLCγ2 productions.

Both PLCγ1 and sphosphoinositiode synthase (PIS) are imp for promoting PLCγ2 productions and necessary for proliferations and bone growth. Where, increasing in PLCγ1 "with reduction or inhibitions in PLCγ2 productions will activate osteoclast but the reactivating proper percentage of PLCγ2 synthesis will activate osteoblast.

Where, PLCγ2, independent of PLCγ1, was required for receptor activator of NF-kB ligand–induced osteoclastogenesis by differentially regulating nuclear factor of activated T cells c1 (NFATc1), [22] that JAK signaling are playing imp roles in running either osteoclast or osteoblast through mitochondrial OPA1 regulation activities, that high gamma receptors with decreasing in beta receptors will activate osteoclast but proper percentages of gamma and beta productions (proper % between PLCγ1 & PLCγ2 productions) will activate proper osteoblast through activating PLCγ2 production Which needed for TXA2 synthesis and for beta-cells maturation and activities.

PLCγ2 can modulate immune activities and T-cells too, where Bruton tyrosine kinase (Btk) activates PLCγ2,11,12 which activate thromboxane A2 re-synthesis.
PLCγ2 has a critical activity in dendritic cells, where is having a Critical function for Development of a Murine Model of Inflammatory Arthritis [24].

And, as PLCγ2 has a critical activity in dendritic cells for activating NF-κB ligand–induced osteoclastogenesis by differentially regulating nuclear factor-activated T cells c1 "NFATc1". As PLCγ2 production modulate the capacity of T cells of dendritic cells.

Where, PLCγ2 is critical for B-cell receptor (BCR) for B cells maturation and functions, and PLCγ2 participates in TCR signal transduction and plays a role in T-cell selection [25].

But I report that modulations of T-cells run by the functions of PLCγ2 for re-activating NF-κB by regulating NFATc1, while Properdin subunits composition can modulate NFATc1 or not.

The increasing in PLCγ1 productions with deficiency or mutation in PLCγ2 will reflect decreasing in B cells maturation and function and can lead to autoinflammation and immune dysregulation (APLAID) which can cause rare monogenic autoinflammatory disease.

That, The diverse pathologies associated with PLCγ2 are exemplified by distinct genetic variants, where inherited mutations at this locus cause PLCγ2-associated antibody deficiency and immune dysregulation [27]. Thrombine activation is highly reactivate intermediate the true fibrin monomer and it rapidly, and irreversibly [28].

PLCγ2 involved with fibrin formation, where Bruton tyrosine kinase (Btk) activates PLCγ2,11,12 leading to thromboxane A2 (TXA2) synthesis [29].

So, PLCγ2 synthesis can define the availability of the synthesis and activities of thromboxane-A and fibrin and re-modulating immune and T cells activities. Also, the antiplatelet and antithrombotic effects of Fc are carried out through oppression of PLCγ2 and subsequent DAG-PKC and TXA2 and IP3-[Ca^{2+}] [30].

The activation of PLCβ through Gq, which results in the formation of IP3 and diacyl glycerol, plays an important role in mediating αIIbβ3 activation [31]. So, in brief BTK necessary for PLCγ2 productions which is necessary for B-cell maturation and functions, and also PLCγ2 is so imp for thromboxane-A synthesis.

Chronic lymphocytic leukemia [CLL] reflect Inhibition in BTK and then in PLCγ2 synthesis which can reflect Inhibition or impaire in Thromboxane-A:

Chronic lymphocytic leukemia [CLL] reflect Inhibition in BTK and then in PLCγ2 synthesis which can reflect Inhibition or impaire in Thromboxane-A:

Collagen binds to its receptors and then activates both the PLCγ2-DAG-PKC and PI3 kinase/Akt-p38 MAPK cascades, where p38 MAPK can activate cPLA2, which catalyzes arachidonic acid (AA) release to produce thromboxane A2 (TXA 2) formation [33].

Bruton’s tyrosine kinase "BTK" activates PLCγ 2 variants mediating ibrutinib resistance in human CLL [34].

BTK inhibitors [ibrutinib, CNX-774] significantly attenuated TPA-induced cell invasion and migration in MCF-7 cells and inhibited the activation of the phospholipase Cγ2/PKCβ signaling pathways [35].

The activation of PLCβ through Gq, which results in the formation of IP3 and diacyl glycerol, plays an important role in mediating αIIbβ3 activation [31]. So, in brief BTK necessary for PLCγ2 productions which is necessary for B-cell maturation and functions, and also PLCγ2 is so imp for thromboxane-A synthesis.

BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature [36].

The inhibitions or reduction or mutations in BTK and in PLCγ2 Bio-Synthesis will reflect reduction or inhibition in thromboxane-A production.

Osteoarthritis "OA" is characterized by a sharp expression in Gamma-Phospholipase-1 "PLCγ1" (which catabolize inflammations), with decreasing "or inhibition" in PLCγ2 "PLC beta" productions (which necessary for immune modulation, for B-cell maturation and for T-cells modulation and regulate TXA2 synthesis).

The increasing in PLCγ1 with Deficiency in Ser amino acids, and deficiency in proper S6K, with decreasing or inhibition in OPA1-synthase activity will lead to inhibition in PLCγ2 which lead to diabetes and early Osteoarthritis "OA" prognosis.

PLCγ2 are so necessary for re-modulating T-cells and immune efficiencies, and necessary for regulating antigen and thromboxane-A synthesis.

The inhibitions or reduction or mutations in BTK and in its main proper PLCγ2 productions will cause an inherent inhibition or reduction in CXCL12 then will be followed by inhibition or
reduction in CXCR4 then will lead to inhibition in the regulation of B-cell maturation, migration, adhesion, and also lead to severe decreasing in anti-inflammatory processes of immune productive efficiency.

Also, inhibition in BTK and PLCγ2 mainly will reflect inhibition in the two antigens IgM in and IgD synthesis.

Chronic lymphocytic leukemia "CLL" reflect decreasing or inhibition on growth-promoting signaling via the B-cell receptor. The Bruton tyrosine kinase (BTK) is the important for PLCγ2 systems which is necessary for B-cell activities and T-cells modulation.

Bruton tyrosine kinase (Btk) necessary to activates PLCγ2 ,11,12 which necessary to activate thromboxane A2 and necessary for modulating immune activities and T-cells both. Too Collagen and BTK pathways are necessary tools for re-activating PLCγ2 which catalyzes arachidonic acid (AA) release to produce thromboxane-A2 (TXA 2) synthesis, and necessary for B cells maturation and critical for B-cell receptor (BCR), where, inhibition in BTK and in PLCγ2 will reflect diabetes, Osteoarthritis, and the Chronic lymphocytic leukemia "CLL" disease depending on the percentage of Ser & hydroponic amino acids shortage and depending on the percentage of inhibition of necessary pathways needed for PLCγ2 synthesis and reactivities.

Also, inhibition in the availability of Ser, Tyr, Leu, Pro with inhibition in necessary hydrophobic amino acids synthesis and in BTK and then in PLCγ2 can lead to Osteosarcoma which is a cancer cases that produces immature bone (due to mutins in PLCγ2 and in TLR4 productions) found at the end of long bones, often around the knee.

Deficiency in proline with inhibition in Ser, Tyr, leu (or mutations in synthase) and in specific beta-subunits-calcium carrier can reflect mutations in the PLCγ2 (beta subunits) productions due to deficiency in proper beta-oxidation that can lead to deficiency or inhibition in the PLCγ2 and PLC alpha, and in MHC class two, that will lead to deficiency or inhibition "or mutations" in "SIRPα1" disease depending on the percentage of Ser & hydroponic amino acids shortage and depending on the percentage of inhibition of necessary pathways needed for PLCγ2 synthesis and reactivities.

Also, inhibition in the availability of Ser, Tyr, Leu, Pro with inhibition in necessary hydrophobic amino acids synthesis and in BTK and then in PLCγ2 can lead to Osteosarcoma which is a cancer cases that produces immature bone (due to mutins in PLCγ2 and in TLR4 productions) found at the end of long bones, often around the knee.

Deficiency in proline with inhibition in Ser, Tyr, leu (or mutations in synthase) and in specific beta-subunits-calcium carrier can reflect mutations in the PLCγ2 (beta subunits) productions due to deficiency in proper beta-oxidation that can lead to deficiency or inhibition in the PLCγ2 and PLC alpha, and in MHC class two, that will lead to deficiency or inhibition "or mutations" in "SIRPα1" disease depending on the percentage of Ser & hydroponic amino acids shortage and depending on the percentage of inhibition of necessary pathways needed for PLCγ2 synthesis and reactivities.

Deficiency in proline with inhibition in Ser, Tyr, Leu, Pro with inhibition in necessary hydrophobic amino acids synthesis and in BTK and then in PLCγ2 can lead to Osteosarcoma which is a cancer cases that produces immature bone (due to mutins in PLCγ2 and in TLR4 productions) found at the end of long bones, often around the knee.

References


3. Ashraf M EIT. An In-Depth Study of TCA cycles, OPA1, S6K1, ATPase, TLR4, MHC-class-I, GCs, and IFNs Biosynthesis, and Their Roles of Deficiency in Diabetes, Asthma, Cancer, etc. and the NAD Roles in their Activities. OAJBS. 2021; 3: 1194-1205.


5. Ashraf Marzouk El Tantawi. An In-Depth Study in TCA Cycles, OPA1, S6K1, ATPase, TLR4, MHC-class-I, GCs, and IFNs Bio-Synthesis, and Their Roles of Deficiency in Diabetes, Asthma, Cancer, etc and the NAD Roles in Their Activities. Japan Journal of Clinical & Medical Research. 2021; 1: 75-83.


