ABSTRACT
The aim of this review is to investigate the phytochemical analysis, toxicity, and the antifungal activity of Gueira senegalensis leaves extract and compare methods. Extract of the leaves of Gueira senegalensis was tested for its antimicrobial activity against Stemphylium solani, Aspergillus flavus, Trichoderma viride, Penicillium Spp., Fusarium verticillatum, Cladosporium cladosporioides, and Fusarium solani. This review showed that Gueira senegalensis leaves extract has no inhibition activity against all of the tested fungal strains. On the other hand, the toxicity test, which was conducted by using brine shrimp, suggests that Gs leaves extract is apparently not toxic. The phytochemical screening revealed that Gueira senegalensis leave extract contains alkaloids, flavonoids, terpenoids, tannin, carbohydrates, proteins, steroids, and saponins. The results of this preliminary investigation suggest that the medicinal plant extract may be safe to use as a drink for treatment of various diseases as has been practiced for years in the villages of Western Sudan. More research is needed to investigate if there is any side effect when the extract is taken orally. Further, the medicinal properties of the phytochemical compounds of Gueira senegalensis need to be further investigation.

Keywords
Phytochemical components, Gueira senegalensis, Extract, Antifungal activity.

Introduction
Gueira senegalensis commonly known as Sabara in Hausa is a shrub of the savannah region of west and central Africa. It is widely being used in traditional medicine for the remedy of ailments/diseases. Its leaves extract is being used against dysentery, diarrhoea, gastrointestinal Pain and disorder, rheumatism and fever [1]. The astringent property of this plant was reported to be due to its tannin content [2].

In view of Williams, E.T et al. [3]. Guinea senegalensis is a tropical shrub of the family Combrataceae, which is used in traditional medicine in northern Nigeria. It is used by local herdsmen in the treatment of trypanomiasis. Also the plant continues to be one of the plants used by local livestock farmers, traditional healers and Fulani herdsmen in the treatment of snakebite in northern...
Nigeria. The plant is used in folkloric medicine in the treatment of dysentery, diarrhoea, stomach upset and hemorrhoids in local communities in Nigeria.

Medicinal properties of plants are hinged on the presence of bioactive principles such as alkaloids, phenols, tannins, glycosides and essential oils amongst others. This necessitates the need for continued screening of medicinal plants, not only to determine the scientific basis for their usage, but also to discover new active principles. The galls of Guiera senegalensis demonstrated pronounced antioxidant potential, showed high polyphenols, tannins and totals flavonoids contents [4]. The flavonoids are not only present in plants as constitutive agents but have also accumulated in plant tissues in response to microbial attack [5].

According to Nabaa et al. [6], in the Sudan, Guiera senegalensis is locally known as Ghubaysh of which the leaves extract and the roots powder are used for treatment of a variety of diseases and wounds, respectively. In a companion paper [7], we found that Guiera senegalensis leaves’ extract has been used for treating jaundice which represents more than 51.5% of conditions treated; and 48.5% of the other diseases that include diabetes mellitus, hypertension, cough, arthritis, enteritis, diarrheea and malaria. In addition, the majority of people surveyed have used roots’ powder of Guiera senegalensis for treatment of wounds, including diabetics wounds, and inflammation of skin, and injuries. Guiera senegalensis extract was also used in the folk medicine in other countries and found to be effective against leprosy, fever, and was helpful against increased blood pressure and high blood sugar levels [8].

In addition to its usefulness as traditional medicinal plant, Guiera senegalensis has been shown to increase soil fertility and crop production without use of fertilizers in the Northern Sahel region, especially in low-yields-low input farms [9]. The importance of Guiera senegalensis in traditional medicine became more apparent with the recent increase in fungal infections in Africa, and elsewhere. Extracts of Leaves, shoots and galls of Guiera senegalensis were found to be useful against bacteria and fungi infections in Burkinabe folk medicine [10]. These antimicrobial properties were credited to the crude methanol extracts of Guiera senegalensis [11]. Studies of medicinal plants usually concentrate on the part of the plant that has been shown to have value in traditional medicine.

Although Guiera senegalensis leaves extract has been used to treat jaundice and many diseases in Western part of Sudan, the antifungal activity of leaf extract has not been documented. The plant extract is prepared by boiling the leaves or soaking them in water [7]. Since there are thousands of species of fungi present in the environment and at least a hundred of them are pathogenic [12], antifungal activity of medicinal plants needs to be addressed. It worth mentioning that the antifungal activity of many medicinal plant species in Africa has not been satisfactorily explored. The aim of study was to examine the phytochemical properties, antimicrobial efficacy and toxicity of Guiera senegalensis leaves’ extract in order to find out their biological activity.

Sample collection
According to Ogbeba et al., [13], Guiera senegalensis leaves were collected from healthy plants in Gwallameji, within Bauchi metropolis and transported to the Biology/Microbiology laboratory of Science Laboratory Technology Department, Federal Polytechnic Bauchi in sterile polythene bags. This is in agreement with other study of Nabaa et al., 2016, the leaves of Guiera senegalensis used in this study were randomly collected from Guiera senegalensis bushes around Ghubaysh village area of Western Kordufan State, West of the Sudan [6].

Sample preparation
In agreement of Ogbeba et al., [13], the leaves collected were washed and dried in the laboratory away from sun light for seven days to prevent the loss of active components. Some of the leaves were ground and then sieved to obtain powder. Some fresh leaves were also preserved in the refrigerator while others were ground for immediate use. According to Nabaa et al., 2016, The plant leaves were dried in the shade. After drying, the leaves were ground well into fine powder using mechanical blender, and the powder was transferred into airtight containers with proper labeling for future use.

Aqueous Extraction
According to Ogbeba et al., [13], the procedure used for aqueous extraction was that described by Predrag et al.. This was obtained by weighing 250g of the plant powder. 500ml of distilled water was added to it and was heated for 20 minutes in a water bath. It was then filtered; the mixture and the filtrate were concentrated over the water bath and the extract was stored in a sterile bottle and labeled. This is the agreement with Nabaa et al., 2016, Five grams of the plant powder was placed in a beaker containing 100 ml. distilled water; soaked and shaken well. The solution was filtered with the help of filter paper and the filtrate was kept and used for further photochemical analysis. The extracts were then kept in sterile bottles, under refrigerated conditions, until further use.

Phytochemical screening
According to Ogbeba et al., [13], Photochemical screening to detect the presence of secondary metabolites such as alkaloids, flavonoids, saponins, tannins, glycosides, anthraquide, steroids and terpense was carried out according to standard procedures as reported by Sofowora [14]. This is the agreement in the study of Nabaa et al., 2016, the presence of different phytochemicals whose biological activity can be of valuable therapeutic index. The result of the presence of the phytochemicals in Guera senegalensis extract, shown in Table 1, is indicated by the colour intensity in a scale of 4 (+, ++, ++++, ++++).
Since medicinal plants, such as Guera senegalensis, are expected to be a valuable source for a variety of drugs, no wonder that 80% of individuals from developed countries use traditional medicines extracted from plants according to WHO. It, therefore, is important to investigate traditional medicinal plants to assess, following scientific methodologies, their properties, safety, and efficiency of treatment, and the optimum dose [15].

According to Mohammed S.Y. and Sule M.S. [16], Phytochemicals are biologically active substances found in plants in small amounts, which are not established nutrients but which nevertheless seem to contribute significantly to protection against degenerative disease [17]. Phytochemicals are many and some of them include alkaloids, flavonoids tannins, saponins etc. Their functions and mechanism of actions may include the following among others: antioxidant activity, hormonal action, stimulation of enzymes, and interference with DNA replication and anti-bacterial properties.

Test for flavonoids
According to of Nabaa et al., 2016, For the confirmation of flavonoids in the Guiera senegalensis leaf powder, 0.5 g of plant extract was placed in a test tube and 10 ml of distilled water was added, 5 ml of dilute ammonia solution were added to a portion of the aqueous filtrate of the plant extract followed by addition of 1 ml concentrated H2SO4. Indication of a yellow color shows the presence of flavonoids in each extract.

Test for saponins (fothing test)
According to Ogbeba et al., 2017. 5ml extract was mixed with 5ml of distilled water in a test tube and it was shaken vigorously. The formation of stable foam was taken as an indication for the presence of saponins. In view of Nabaa et al., 2016, the crude extract was mixed with 5 ml of distilled water in a test tube and it was shaken vigorously. The formation of stable foam was taken as an indication for the presence of saponins.

Test for steroids
According to Ogbeba et al., [13]. Five drops of concentrated H2SO4 were added to 1ml of extract in a test tube. Red coloration was observed, which indicated the presence of steroids. Nabaa et al., 2016, Guera senegalensis leaves powder was mixed with 2 ml of chloroform and concentrated H2SO4 was added sidewise. A red color produced in the lower chloroform layer indicated the presence of steroids. Another test was performed by mixing crude extract with 2 ml of chloroform. Then 2 ml of each of concentrated H2SO4 and acetic acid were poured into the mixture. The development of a greenish coloration indicated the presence of steroids [18].

Test for Tannins
To 1 ml of the extract, 1ml of freshly prepared 10% Potassium hydroxide (KOH) was added. A dirty white precipitate showed the presence of tannins. Ogbeba et al., 2017. According to Nabaa et al., 2016, Crude extract of Guera senegalensis powder was mixed with 2 ml of 2% solution of FeCl3. A blue-green or black coloration indicated the presence of tannins [18].

Test for alkaloids
To 3 ml of the extract, 1ml of 1% hydrochloric acid (HCl) was added in a test tube. The mixture was heated for 20 minutes, cooled and filtered. Two drops of Mayer’s reagent were added to 1ml of the extract. A creamy precipitate was an indication of the presence of alkaloids. Ogbeba et al., 2017. In the of Nabaa et al., 2016. The procedure used for determination of alkaloids in Guera senegalensis sample is similar to that described by [19]. Briefly, 0.2 g of Guera senegalensis leaf powder was added to a glass test tube that has 3 ml of hexane. The powder and hexane were thoroughly mixed, shaken well, and filtered. To the hexane and Guera senegalensis leaves extract mixture, 5 ml of 2% HCl were added, and the mixture heated until boiling. The mixture was then filtered, and 1-3 drops of picric acid were added to the hexane, HCl and Guera senegalensis leaf extract filtrate. The presence of alkaloids in the Guera senegalensis sample was confirmed by the yellow-colored precipitate that was formed.

Conclusion and Recommendations
Medicinal plants are used for discovering and screening of the phytochemical constituents which are very helpful for the manufacturing of new drugs for treatment of various diseases. The results obtained in this review have shown that Guera senegalensis leaves have high concentration of alkaloids and low concentration of tannins and saponins and have no toxic effect and show no antimicrobial activities in case of fungi. These observations and the findings of this review suggest an urgent need for investigating why Guera senegalensis extract is credited for curing several disease and infections in Africa. It would important to find out which phytochemical compound in Guera senegalensis is responsible for what activity. Therefore, the important phytochemical compounds identified by this reviewin the Guera senegalensis, will be helpful in treating different diseases of this particular region of Africa, and may be in other regions. The results could serve for further pharmacological and phytochemical research. Also more research needed to evaluate the potential effectiveness of the crude extracts as the antimicrobial agents.

References