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ABSTRACT
Pathophysiological mechanisms for development and progression of ischemic heart disease, which is essentially an 
age-related condition, may differ between men and women. Age-related changes in cardiac and vascular anatomy 
and physiopathology combined with traditional risk factors affect the likelihood of developing heart disease. 
Sex specific features of cardiac and vascular remodeling with age are associated with a higher prevalence of 
ischemic heart disease in women post-menopause. Cardiac symptoms such as chest pain/discomfort are often less 
in women, which generally results in less aggressive clinical treatment compared to men. Incidentally, treatment 
guidelines for acute myocardial infarction have for the most part, been established from studies with a large 
male cohort. Sex differences relating to effects of ischemia on overall cardiovascular function could contribute 
to worse clinical outcomes for females. Treatment options for women also arise because they generally present 
with multiple co-morbidities. The present review focuses on recent findings for sex differences in pathogenesis of 
ischemic heart disease, vascular function as well as potential use of cardio protection strategies.
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Introduction
Biological sex differences affect progression of cardiovascular 
disease. In men and women microvascular disease, epicardial 
atherosclerosis and endothelial dysfunction stimulate vessel 
remodeling leading to myocardial ischemia [1,2]. While men 
appear to be more susceptible to typical clinical vascular changes, 
women generally are at greater risk for atypical vascular disease 
[3]. Interestingly, women with ischemic heart disease (IHD) often 
present with no angiographic evidence of obstructive coronary 
artery disease (CAD) [4-7]. Whereas «female protection» against 
development of cardiovascular disease has been widely researched, 
numerous questions remain as to why, once CAD is manifest, 
clinical outcomes in women are worse [8].

Multiple comorbidities display sex differences with regard to 

onset, frequency, morbidity and mortality [9,10]. Sex-specific 
relationships for cardio metabolic diseases, including obesity and 
diabetes, remain largely unexplored. However, recent findings 
suggest that differences in disease sequelae occur in both men and 
women with underlying cardio metabolic disease [11]. In patients 
with chronic kidney disease symptoms may be more pervasive in 
females because of greater clinical use of diuretics particularly in 
older females [12]. Both sex and age are important modifiers of 
gene expression in the mammalian heart [13,14]. Heart size differs 
between males and females in relation to age, which contributes 
to variations in overall cardiac function. In men greater absolute 
values for left ventricle (LV) mass, wall thickness and cavity 
dimensions are reported [15,16]; however, relative wall thickness 
of the heart is not different [17]. For women an increase in LV wall 
thickness [18] and concentric remodeling [19,20] is observed and 
is often accompanied by marked LV diastolic dysfunction [21]. 
Systolic torsion and circumferential LV shortening also appears to 
be greater in women [22] and is probably related to greater pulsatile 
load and differential gene expression of extracellular matrix 
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components [23-25]. While cardiac performance is dependent on 
cardiac work the pressure buffering properties of elastic arteries 
also plays an important role. As such, a compliant arterial system 
(i.e. from conductance arteries to the microvasculature) is required 
for optimal cardiovascular performance. Differences in micro 
vessel function between sexes is an important area of study since 
modulations in oxygen exchange at the cellular level in the heart is 
a risk factor for progression of IHD.

Ischemic heart disease involves an imbalance between myocardial 
oxygen supply and demand [26] and is caused by obstructive or 
non-obstructive atherosclerotic CAD, or myocardial ischemia 
(produced by micro vessel or endothelial dysfunction, vasomotor 
abnormalities, etc.) [27]. Patterns of cardiac remodeling caused by 
adverse cardiovascular events, vary between sexes during ageing. 
The debate over menopause versus biological ageing and their 
contribution to age-related cardiovascular risk is important and 
ongoing. Common cardiovascular risk factors (i.e. LDL cholesterol, 
apo-lipoprotein B, etc.) in women change in relation to age but not 
with menopause [28]. Data from the Framingham study suggest that 
cardiovascular risk status affects age at menopause but not vice-
versa. As such, risk factor levels change during menopause likely 
because of a combination of chronologic ageing and menopausal 
transition. Significant correlations between post-menopausal 
status, average age of menopause or clinical outcomes were not 
evident from a meta-analysis [29]. Intrinsic non-hormonal factors 
that happen during a complete lifespan may also be more important 
than changes that occur during midlife [16,30,31] but overall, risk 
factor monitoring need to be prioritized for women [32,33].

For this review, we searched basic science and clinical papers 
using MEDLINE, PubMed and Google Scholar with the search 
terms: sex differences, vascular function, myocardial infarction, 
cell death and ischemic conditioning. Herein, we review the 
current literature describing sex-specific differences and its 
impact on pathogenesis of acute myocardial infarction, vascular 
function, cellular protection strategies and outcomes. We paid 
particular attention to biological sex (not gender domain), but 
understand that while mechanisms between gender identity and 
cardiovascular disease risk may be important they have not been 
clearly established [34].

Sex Hormones
Male and female sex hormones affect regulation of vascular 
function; however, their actions are not uniform between sexes. 
Expression or abundance of sex hormone receptors in vascular 
smooth muscle differs between males and females causing important 
variations in vascular function [35]. Receptors for various sex 
hormones (estrogen, progesterone, testosterone) are readily found 
in vascular endothelium and smooth muscle [36,37]. Interactions of 
sex hormones with nuclear/cytosolic receptors triggers numerous 
genomic effects mediated by activation of signalling pathways that 
can stimulate or inhibit cell growth and proliferation [38]. Estrogen 
or testosterone effects on vasoregulation (i.e. tone, elasticity, etc.) 
affect progression of cardiovascular disease; however, the overall 
effects of testosterone – generally believed to negatively affect 

the heart - on cardiac physiology are less studied therefore in a 
review we concentrate specifically on estrogen effects. Estrogen 
receptors are localized in myocardium, vascular endothelium, 
smooth muscle and adventitial cells [39]. Estrogen-mediated 
gene transcription involves direct binding to receptors within the 
nucleus [40]. Inhibition of estrogen receptor activity adversely 
affects both structural and functional remodeling in females, which 
has the potential to worsen cardiac dysfunction. Post-menopausal 
estrogen replacement therapy appears to reduce the incidence of 
adverse coronary events and associated mortality [41].

In females, estrogen: 1- modulates vascular tone via endothelin 
(ET-1) [42] and multiple nitric oxide (NO)-dependent [43] and 
independent [44] pathways and 2- affects vessel reactivity by 
stimulating NO release from endothelium [45]. Biological effects 
of ET-1 occur via activation of ETA or ETB receptor subtypes the 
ratio of which, and location, varies depending on the vascular bed 
(arteries > arterioles) [46]. Bolus intravenous ET-1 produces a 
biphasic response with an initial decrease (via NO and prostacyclin 
synthesis in ETB-stimulated endothelium [47,48]) followed by a 
long-term increase (mediated by ETA receptor subtypes in smooth 
muscle [49]) in vascular resistance. Findings from our laboratory 
reported that coronary resistance vessels in males are more 
sensitive to ET-1 [50]; these findings have been corroborated in 
mesenteric arteries from rats with spontaneous hypertension [51]. 
Age and phase of the menstrual cycle also play an important role in 
endothelial function [52]. DuPont and coworkers recently reported 
that vascular aging phenotypes, mediated by sexually dimorphic 
molecular mechanisms, occur later in females [53]. Modulation 
of vascular responses to ET-1 depends on age, sex and vessel 
type. For example, vessel responses to ET-1 are lower in aorta of 
females and resistance arterioles in males [51,54] but are greater 
in larger male coronary vessels [55]. Responses to endogenous 
ET-1 is therefore an important determinant for regulation of organ 
perfusion [56]. Furthermore, myogenic responses are known to be 
modified by local changes in NO production when estrogen levels 
are modified [44,45,57,58].

Endothelial dysfunction causes an increase in peripheral resistance 
consequent to greater release of ET-1 or by reduced synthesis 
of vascular relaxation factors. Higher circulating plasma ET-1 
levels correlate with heart failure and IHD [59]. Production 
of NO in premenopausal women is greater than in men [60]. 
Thus, the balance between NO and ET-1 production (regulated 
through autocrine feedback mechanisms [61-63]) is critical for 
vasoregulation [64]; for example, reduced production of NO 
attenuates sensitivity of vascular smooth muscle to the effects of 
vasoconstrictor compounds [65,66]. In female rats subject to acute 
myocardial ischemia, treatment with estrogen has shown variable 
results [67]; however, blockade of estrogen receptors worsens 
ischemic injury [68,69]. 

Administration of estrogen to males, to induce post-ischemic 
protection, was inconclusive [70,71]. Treatment with sex 
hormones has been reported to restore endothelial function 
[72]. In ovariectomized rabbits, treated with either 17β-estradiol 
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or DHEA (dehydroepiandrosterone), we reported significant 
improvement of myocardial perfusion [73]. Positive treatment 
effects were attributed to normalization (particularly at the level of 
the microvasculature where oxygen exchange at the cellular level 
is crucial) of the oxygen supply-demand equilibrium due to a shift 
in coronary pressure-flow parameters.

Vascular Physiopathology
Arteries are classified as being elastic or muscular and comprise 
distinct layers each with a different cellular composition 
(endothelial, smooth muscle, etc.) to ensure maximum functionality 
[74]. Vessel wall biology and vessel size differs between men 
and women but cellular or molecular mechanisms responsible 
have not been established. Sex hormones such as estrogen or 
other sex-specific factors that control vessel tone and size are 
potential candidates [75-77]. Vascular endothelium is involved in 
regulation of arterial tone, platelet function and inflammatory cell 
interactions, coagulation and vessel growth [78] via the synthesis/
release of a plethora of vasoactive compounds [79]. Patterns of 
vascular remodeling over time also differ between the sexes [16] 
and are caused by a host of risk factors [80]. In women with CAD, 
arterial wall thickness is greater [81] and abnormal endothelial and 
non-endothelium dependent vessel function is common [6,82,83] 
thereby increasing the risk for adverse short-term outcomes 
[79,84,85].

Protection against vascular disease has been in part, attributed 
to levels of sex hormones. The relation between endogenous 
estrogen and cardiovascular disease is documented [86] and 
studies investigating potential associations between circulating 
sex steroids, sex hormone interactions and development of CAD 
have provided variable findings [3,87]. Progression of heart failure 
in females is reportedly ovarian hormone dependent [40]. A recent 
review suggested that sex-related differences in regulation of 
the renin-angiotensin-aldosterone system by estrogen might be 
beneficial [88]. Mechanisms responsible for protection are not 
easy to evaluate but have previously been discussed [25].

Potential Consequences of Vascular Dysfunction
Ageing and prevalence of cardiovascular risk factors contribute 
to progressive ventricular and arterial stiffening and ultimately 
contribute to pathogenesis of heart failure. Of interest is that 
ventricular-arterial stiffening appears to be exacerbated in women, 
moreso in older women [89].

Arterial stiffness: Vascular ageing differs between sexes and 
affects overt cardiovascular disease risk. Molecular mechanisms 
that contribute to different manifestations of cardiovascular system 
ageing remain poorly understood [53,90,91]. Changes in vessel 
function due to ageing include endothelial dysfunction, which lead 
to arterial stiffness and ischemic heart disease; these contribute 
to increases in systolic blood pressure and pulse pressure [92]. 
Arterial stiffness is an emerging marker for adverse cardiovascular 
events [89]. In pre-menopausal women (compared to men of 
similar age) autonomic tone and baroreceptor responses are lower 
but overall vascular function is preserved [93,94]; however, 

progression of age-related arterial dysfunction occurs more 
rapidly in post- menopausal women [95]. In addition, subclinical 
alterations in arterial structure progress differently between the 
sexes. For example, risk factors such as carotid intima-media 
thickening, arterial calcification and atherosclerosis are more 
prevalent in younger men (compared to women of similar age) but 
with advancing age levels are analogous [96,97]. Atherosclerotic 
plaque characteristics (i.e. thin fibrous cap, lipid rich or necrotic 
core, etc.) also differ substantially between the sexes rendering 
men more susceptible to negative consequences of cardiovascular 
disease [98].

Pressure buffering properties of elastic arteries are essential for 
optimization of cardiac work as they allow for greater transfer 
of blood from the heart to the periphery while at the same time 
regulating undue fluctuations in pressure [89]. Aortic pulse wave 
analysis is generally used to evaluate arterial stiffness (in pre-clinical 
and clinical studies) [90]. When arterial stiffness is heightened 
the reflected wave travels faster and returns to the heart near 
systole resulting in higher systolic afterload and reduced diastolic 
coronary perfusion pressure [99]. Sex differences contribute to 
variations in development of arterial stiffness and higher pulse 
pressure, which are considered to be an important risk factor for 
development of cardiovascular disease [100]. The possibility that 
variations in morphometric (i.e. size, shape) and vessel anatomy 
between sexes may be responsible has been advanced [101,102] 
but this has not been clearly established at a mechanistic level [90]. 
Increased wall stress, left ventricular diastolic dysfunction and 
reduced ventricular- arterial coupling affects arterial stiffness more 
so in women [102-106]. Ventricular-arterial stiffening increases 
volume sensitivity whereby small changes in volume significantly 
augment systolic and pulse pressures.

Stability and compliance of the arterial wall requires a balance 
between extracellular matrix proteins such as elastin and collagen. 
Disruptions of this balance, which leads to arterial stiffening are 
exacerbated in the presence of cardiovascular risk factors [107]. 
Potential mechanisms of arterial stiffness include 1- alterations to 
extracellular matrix (i.e. augmented collagen deposition, increased 
elastin breakdown, etc.), 2- alterations to vascular smooth muscle 
cytoskeleton and 3- altered integrin and extracellular matrix 
interactions [108-110]. Various studies have described a role for 
vascular oxidative stress and increased production of oxygen 
radicals along with activation of angiotensin receptor mediated 
intracellular signalling. Unfortunately, most preclinical studies on 
age-related pathogenesis of arterial stiffness are limited to male 
subjects. Further studies to elucidate potential sex differences at 
the mechanistic level are essential; this might also be important for 
development and modification of treatment stratagems for women 
[111-113].

Ischemic heart disease: Ischemic heart disease continues to 
claim a disproportionate number of lives worldwide compared 
to other diseases. The incidence of acute myocardial infarction 
is significantly lower in pre-menopausal women (compared to 
age-matched men). As a result, clinical treatment for women with 
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acute myocardial infarction is often less aggressive which might 
help to explain the higher mortality risk [114-116] and worse 
clinical outcome (compared to age-matched men) following acute 
myocardial infarction. Sex is independently associated with a 
higher risk of mortality [117,118] but its influence on prognosis in 
patients with IHD remains largely unexplored.

Acute myocardial ischemia (classified on the basis of 
electrocardiographic presentation) influences regional ST-
segment profiles [119,120]; for instance, ST-segment elevation 
myocardial infarction (STEMI) is characterized by a ≥ 2 mm 
ST segment elevation and prominent T waves) while non-ST-
segment elevation myocardial infarction (NSTEMI) consists of 
ST- segment depression with T wave inversion. STEMI is life 
threatening and time sensitive and requires rapid intervention to 
alleviate symptoms. European Society of Cardiology Guidelines 
for management of STEMI advise that females comprise a distinct 
subset and therefore require particular attention with regard 
to diagnosis and treatment [121]. A greater risk for net adverse 
clinical events has been reported in females with STEMI; however, 
these patients are often older and present with more comorbidities 
(i.e. hypertension, diabetes, chronic kidney disease, vascular 
disease, etc.) [122]. Thus, it is not clear that differences are real; 
they could be related to other factors including symptom-to-door 
or door-to-balloon times that are generally longer in women [123-
125]. A recent study from China, reported that long-term outcomes 
in female patients with STEMI were worse (compared to short-
term data) [126]. Reasons for poorer outcomes in females with 
STEMI are multifactorial and include psychological stressors, 
intrinsic variations in angiogenesis, physiopathology of ischemic 
heart disease and sex hormone deficiency [126,127]. Finally, a 
prospective observational cohort study of females with STEMI 
from Sweden reported that sex was independently associated with 
reduced eGFR, a strong independent risk factor for short as well as 
long-term mortality.

Animal studies with acute myocardial infarction: In situ 
experimental findings from diverse animal species regarding 
effects of sex and myocardial infarction in relation to sex are 
equivocal [128-130] with some studies reporting reduced 
susceptibility to ischemic injury in females [128,131,132]. Indeed, 
post-ischemic incidence of cardiac arrhythmias, ventricular 
contractile dysfunction and necrosis are all reportedly mitigated in 
studies comparing females versus males [133-135].

Acute cellular injury caused by arterial obstruction stimulates 
release of a host of inflammatory mediators that participate in the 
development of organ dysfunction and post- ischemic remodeling. 
In both animal and human studies, production of pro-inflammatory 
cytokines varies between the sexes in response to cellular injury 
[136,137]. For example, post-ischemic activation of myocardial 
p38 MAPK (mitogen-activated protein kinase) differs in females 
and results in significantly decreased cytokine production [135]. 
Thus, subtle biochemical differences between sexes could affect 
ischemia-induced alterations at the cellular level. These differences 
in cardio protection might be related to release of other humoral 

factors that are known to activate intracellular signalling pathways.

Potential cardio protective strategies
Activation of endogenous cellular protection mechanisms post-
injury have been under intense scrutiny since Murry et al published 
their paper on reduction of ischemic injury by preconditioning 
[138]. Exercise training (potential candidate for preconditioning) 
also has infarct-sparing effects; however, protection is variable 
between sexes [131,139-141]. For ischemic preconditioning, 
application of multiple, brief cycles of non-lethal ischemia followed 
by restoration of blood flow to the same vascular bed prior to a 
prolonged ischemic event significantly delays progression of cell 
death [138,142,143]. Conditioning-mediated protection, reported 
in all species studied including humans, may also be influenced 
by sex. In animal studies that compared the level of protection 
by ischemic conditioning between males and females infarct size 
was reduced less in the female heart [144-146]; however, recent 
findings suggest that sex may not be a determinant for conditioning 
mediated protection [147]. Multiple pathways that lead to reduced 
cellular injury may involve sex hormones. For instance, in mice, 
subject to global ischemia preceded by ischemic preconditioning, 
post-ischemic contractile function was only improved in older 
animals. However, this was not observed for males suggesting 
that both age and sex could be critical determinants of ischemic 
conditioning-mediated cytoprotection [132]. In clinical studies of 
remote conditioning, no differences between sexes with regard to 
biomarker release or infarct size have been reported to date [148-
151].

Conclusions
Activation of specific physiological mechanisms or intracellular 
signalling pathways that are involved in the pathogenesis of cellular 
injury in relation to sex have not been established. Regulation of 
blood perfusion, within the microvasculature, probably differs 
between the sexes and may contribute to early limitation, and 
later worsening of myocardial function with ageing. Improved 
understanding of these differences could be important for clinical 
diagnosis and treatment of women with vascular or ischemic heart 
disease. While female hearts are initially believed to be more 
resistant to ischemia-reperfusion injury compared to males, current 
data show that protection is age-dependent. Further studies need to 
address risk factors to understand how they may be responsible 
for increased morbidity and mortality particularly in older women. 
New clinical stratagems that tailor to the needs of women with 
acute myocardial infarction and its consequences are also required.
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