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Introduction
Harmonic oscillator chains are used as models in the study of 
solid-state physics [1-4]. The normal coordinates method was 
used in most of the early work. Since early 1980s the recurrence 
relations (RR) method has been developed [5-7] and applied to 
various areas in physics, for example, two-dimensional electron 
gas [8], a relativistic plasmonic Dirac electron gas [9] and spin 
dynamics of different models, etc. [10-14].

The RR method is also used to study oscillator chains, e.g., a 
monatomic chain without [15] or with a mass impurity [16], a 
Bethe lattice [17], a diatomic chains without [18] or with a mass 
impurity [19,20], a monatomic chain with a full impurity, i.e. an 
impurity with different mass and Hooke constant [21] as well as a 
diatomic chain with a full impurity [22], etc.

It is well known that a generalized Langevin equation involving 
a memory function was introduced by Mori [23] in a projection 
operator approach and was derived later by Lee using the RR 
method [7]. The memory function method has been applied to 
different physical models, such as the analysis of classical dense 
fluid and Heisenberg ferromagnets [7], spin-1/2 van der Waals 
model [24], two-dimensional dense electron gas at T = 0 [24,25], 
quantum one-dimensional XY-model [26], the long-time tail effect 
of the correlation function [27], as well as in solving the Liouville 
equation [28], etc. For a review of its applications c.f. [29]. The 
memory function of a full impurity in a monatomic chain is also 
studied by means of the RR method [21].

The purpose of this paper is to study the memory function of 
a full impurity in a classical diatomic chain. It turns out that 
the Laplace transform of the memory function has two pairs of 
resonant poles and three separate branch cuts. The poles contribute 
a cosine and the cuts contribute acoustic and optical branches. 
Both branches are expressed as a convolution of a difference of 
two sines and an expansion of even-order Bessel functions. The 
expansion coefficients are found the same as those obtained for the 
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ABSTRACT
The memory function of an impurity with different mass and Hooke constant in a classical diatomic chain is 
studied by means of the recurrence relations method. The Laplace transform of the memory function has two 
pairs of resonant poles and three branch cuts. The poles contribute a cosine and the cuts contribute acoustic and 
optic branches, which are expressed as a convolution of a difference of two sines and an expansion of even-order 
Bessel functions. The expansion coefficients are integrals of Jacobian elliptic function sn(u) along the real axis 
in a complex u+iv plane for the acoustic branch, and integrals of nd(v) along a contour parallel to the imaginary 
axis of the plane for the optical branch, respectively. Different special cases are discussed in detail. It shows that a 
perfect monatomic or diatomic chain and such a chain with a mass impurity share the same memory function except for 
a constant factor, and that the pole contribution exists only if the impurity has both different mass and Hooke constant. 
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momentum autocorrelation function (ACF) of a mass impurity in 
a diatomic chain [20] except for a constant factor. Thus, we can 
directly employ the results of [20]. The expansion coefficients are 
integrals of Jacobian elliptic function sn(u) along the real axis in 
a complex u + iv plane for the acoustic branch, and integrals of 
elliptic function nd(v) along a contour parallel to the imaginary 
axis in that plane for the optical branch, respectively.

The memory functions in different special cases are also examined. 
It turns out that the memory function of a chain with a mass 
impurity is the same as that of a perfect chain except for a constant 
factor, and that only if a chain has a full impurity has its memory 
function a contribution from the poles. These are true for both 
monatomic and diatomic chains. 

The paper is organized as follows. In Section 2 an outline of the 
recurrence relations method is presented and the model is briefly 
studied in general. The pole and cut contributions to the memory 
function are respectively derived in Sections 3 and 4. Some special 
cases are examined in Section 5 and conclusions are drawn in 
Section 6.
 
Method and Model 
In this section we briefly review the recurrence relations method 
and our model.

The Recurrence Relations Method 
A dynamic variable )(tA  of a system may be expanded in a 
Hilbert space [5-7],
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where νf  )1,...,1,0( −= dν  are orthogonal basis vectors which 
span a space S , the expansion coefficients {av(t)} are real functions 
bearing the time dependence of )(tA . The vectors }{ νf  satisfy a 
set of recurrance relations
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defines the space.

H  is the Hamiltonian and βT the inverse temperature. Similarly, 
{av (t)} satisfy the fllowing recurrence relations:
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with ɑ́ v(t) = dɑv(t)/dt. The time evolution of )(tA  is 
characterized by the dimensionality d  of S and the recurrants 
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Now introduce a subspace 1S , which is spanned by basis vectors
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independent real functions satisfying the recurrence relations: 
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The Laplace transform of )(1 tb  may be expressed in terms of 
recurrants ),...,,,( 1321 −∆∆∆= dσ , a subset of σ : 

 
 )))/.../(/(/(1)( 1321 zzzzzb d−∆+∆+∆+= .                (2.1)

It is a continued fraction.

The time rate of )(0 ta  may be written as [7]
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It is a scalar generalized Langevin equation in which 

M )()( 11 tbt ∆=                 (2,2)

is the memory function.

The Model
A diatomic circle chain is composed of classic oscillators 1m , 
m2 and an impurity 0m . Oscillators 1m  locate at sites ,...3,1 ±±q , 

2m  at ,...4,2 ±±q  and 0m  at 0q . The oscillators 1m , 2m  are in 
interaction with their nearest neighbors via springs with Hooke 
constant K, and the impurity 0m  interacts with its two nearest 
neighbors 1m  through springs with Hooke constants K0 . The total 
oscillator number N  is even. The periodic boundary conditions 
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The recurrants of the model ),...,,,( 1321 −∆∆∆∆= dσ  are derived as [22] 

      (2,3) 

where 01 / mm=η , 21 / mm=λ  and KK /0=κ  are parameters. 
σ  is a sequence with periodicity four. 
With (2.3), (2.1) reads 
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are coefficients. )(zD  may be written as
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It has two pairs of resonant poles im± im, in± in and three branch cuts 
with endpoints at ia± ia, ib± ib and ic± ic. Thus, we have 
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The initial condition is given by 
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The Pole Contribution
Frequencies
By (2.14), we have
 ntNmtMtb pol coscos),;(1 +=λκ , 

with frequencies 
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The amplitudes M and N will be derived later. Besides, we obtain 

(1) 2
22 dnm =+ , ∆=− 222 nm , 0

22 dnm = .              (3.2)

(2) In the limit 1→κ ,
 .),(lim),1( 2

1

2 ∞→=
+→+ λκλ

κ
mm , 2),(lim),1( 2

1

2 ==
→

λκλ
κ

nn , or 

∞→+ ),1( λm , 2),1( =λn .                  (3.3) 
In this limit exists mode n  only.

(3) Write (2.13) as 

 [ ]BAAm −+
−

= 22

)1(2
1),(
κ

λκ  ,

 [ ]BAAn −−
−

= 22

)1(2
1),(
κ

λκ ,                   (3.4)

where
 122 −−+= λκλκA , λκκ )1(8 2 −=B ,
 )1(4)]12([ 2222 −+−−−=− λκλκλκBA .              (3.5)

When 1=λ : 

1
)1,(

−
=

κ
κkm , 2)1,( =κn .               (3.6)

When 1−= κλ : 

κκκ 2)1,( =−m , κκκ =− )1,(n .                  (3.7) 

(4) Since ,m  n  are frequencies, so 2m , 2n  must be real and 
non-negative:
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determining a curve . At any point in the curve, the two frequencies 
are equal:
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Frequencies ),( λκm  and ),( λκn  are plotted in Figures 1 and 2. 

In Figure 1, when +→1κ , ∞→),( λκm  and 2),1( =λn , i.e. 
(3.3). All curves )1,(κn  cross point (1, 2 ), c.f. (3.6). In Figure 2 
we see something unexpected: Curve ),4( λm  crosses ),7( λm  at 
about 5.4≈λ , and it looks to cross m(10, λ) somewhere outside 
the figure. This happens because ),4( λm  has larger slope than 

),7( λm  and m(10, λ) at, say, 2=λ , 3, 4, etc.
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Then we numerically calculate and compare the slopes of m(4, λ), 
m(7, λ), m(10, λ) with different values of λ  and confirm that 
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Figure 1: The κ- dependency of m(κ) and n(κ) with different λ.

Figure 2: The λ - dependency of m(λ) and n(λ) with different κ.

Regions in the κ -λ  plane
Now introduce a κ -λ  plane. By (2.14), )(1 zb  has two pairs of 
resonant poles im± im and in± in. We try to determine which mode, m 
or n, contributes to the memory function in a certain region.

Write (2.5) as 
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At poles im± im and in±in,

 [ ] 0)()(0 =+ poleszzSzD .              (3.12)

Introduce 
 )2)(2(4)(2)()( 2224

00 κλκλλκ −−=++−=±≡ mmmmimDmD  (3.13a)
 )2)(2(4)(2)()( 2224

00 κλκλλκ −−=++−=±≡ nnnninDnD  (3.13b)

In (3.12), the sign of )(0 mD  or )(0 nD  plays an important role in 
determining the mode m or n. Setting 0)(0 =mD  and 0)(0 =nD  
yields 2m , λ22 =n , κ2 . Setting κ22 =m  yields κ = 1 and λ=κ−1; 
setting λ22 =m  gives 1=λ . Same are true for 2n . Thus, we have 
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Lines 1=λ , 1=κ  and 1−= κλ  divide the κ -λ  plane into 
six regions IIId , IIIu , IId , IIu , Id , and uI  shown in Figure 3.

Figure 3: The regions in the κ - λ plane.

Numerical calculation of ),( λκmD  and ),( λκnD  gives their signs 
in the vicinities of lines 1=λ  and 1−= κλ  listed in Table 1. 

Table 1: Signs of ),( λκmD , ),( λκnD  in the vicinities of lines λ 
= 1 and 1−= κλ .

 Region  dIII  uIII   dII  uII   dI
 uI

),( λκmD  +  -  +  +  -  -

),( λκnD  +  -  -  +  -  -
 
Amplitudes
In Appendix A, amplitudes M and N are derived by taking into 
account the signs of ),( λκmD , ),( λκnD  in (3.12) shown in Table 
1 and calculating the residues of function 
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at poles im±im and in± in in different regions. The results are as 
follows:
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By (A.5a, b)~(A.10a, b), we have the mode and amplitude in 
different regions shown in Table 2.

Table 2: Mode and amplitude in different regions.

 Region  dIII  uIII   dII  uII   dI  uI
Mode & Amplitude  n, N  m. M  none  n, N  m, M  m, M

Comparing Table 1 and Table 2 we reach the criteria:

In the physical region of mode m or n, respectively holds the 
inequality

0),( <λκmD , 0),( >λκnD .               (3.16) 

Therefore, the pole contribution in different regions are as follows:
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The amplitudes are subject to 1|),(| ≤λκM  and 1|),(| ≤λκN .

The Cut Contribution 
Now consider the cut contribution to the memory function. 
Since zpz 1
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here L denotes the Laplace transformation. 
Write the integrand as )()( zgzf , take  12222 )])([()( −++= nzmzzf

 
and  ))()(()( 222222 czbzazzg +++= , then

=)(tF  L )]([1 zf−  

)(
sinsin

22 nmmn
mtnntm

−
−

= ,                     (4.2)

=)(tG  L )]([1 zg−  
∫ +++=
C

zteczbzazdz
i

))()((
2
1 222222

π
, 

and

∫∫ −
−

=−
−

=
ttcut tGFdGtFdtb
001 )()(

)1(2
)()(

)1(2
)( τττ

κ
κτττ

κ
κ

.   (4.3)

Here )(tG  depends only on λ, i.e. independent of the impurity. 
Moreover, (4.3) is the same as Eq. (18b) in Ref. [20] except for a 
constant factor α = η/(2η‒λ), so we can write down )(tG  directly. 
In the following we refer Ref. [20] as I and denote, say, Eq. (18b) 
in Ref. [20] as Eq. (I.18b), etc.

Acoustic branch
If 1<λ  )0( acby <<≤≤ . By (I.41a),
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where {cj(n)} are expansion coefficients, )1(0 <λacoU  and )1(
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are auxiliary integrals, their expressions and relevant quantities are 
respectively given by Eqs. (I.36) and (I.40) etc. Thus the acoustic 
branch is 
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If 1>λ  )0( abcy <<≤≤ . By. (I.56a), 
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where )1(0 >λacoU  and )1(
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jU  are given by (I.51) and (I.55), 
respectively. 

The acoustic branch is thus
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The acoustic branch is expressed as a convolution of a difference 
of two sines and an even-order Bessel function expansion. The 
expansion coefficients are integrals of elliptic function sn(u)  along 
the real axis in a complex u+iv  plane. Besides, )(0 λacoU  can be 
expressed in terms of Legendre elliptic integrals of the first, second 
and third kind [20].

Optical Branch 
If 1<λ  )0( aycb ≤≤<< . By (I.77a),
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Integrals )1(0 <λoptV , )1(
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jV  and relevant quantities are 
respectively shown in Eqs. (I.73) and (I.76), etc. The optical 
branch reads

[ ]×−−−
−−

=< ∫
topt tmntnmd

nmmn
bcatb

022

2

1 )(sin)(sin
)()1(

)1,;( κκτ
κπ

κλκ

 
)]()1()(2)1([ 2

1

~

1
0 τλλ aJVncV n

n

opt

j

n

j
j

opt <+< ∑∑
∞

= =

.             (4.9)

If 1>λ  )0( aybc ≤≤<< . By (I.88a),



Volume 3 | Issue 1 | 6 of 14J Adv Mater Sci Eng, 2023

 
)]()1()(2)1([2)1;( 2

1

~

1
0

2

atJVncVbcatG n
n

opt

j

n

j
j

optopt >+>=> ∑∑
∞

= =

λλ
π

λ ,     (4.10)

and auxillary integrals )1(0 >λoptV  and )1(
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jV  are given by 
(I.85) and (I.86), respectively. 

The optical branch takes the form 
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The optical branch is given by a convolution of a difference of two 
sines and an even-order Bessel function expansion. The expansion 
coefficients are integrals of elliptic functions nd(v) along a contour 
parallel to the imaginary axis in the complex u+iv plane. 

In fact, the expansion coefficients for the optical branch are 
originally obtained as integrals of complex elliptic functions 
sn(u+iv). By means of the addition theorem [30], the complex 
elliptic function is replaced by a real function nd(v). 
Finally, we obtain the memory functions

M )]1,;()1,;()1,;([2)1,;( 111 <+<+<=< λκλκλκηκλκ tbtbtbt optacopol . (4.12a)

M )]1,;()1,;()1,;([2)1,;( 111 >+>+>=> λκλκλκηκλκ tbtbtbt optacopol . (4.12b)

Since the cut contribution is given by a convolution, the initial 
condition (2.16) is not appropriate. However, after the time integral 
is worked out, (2.16) applies. 

Special cases 
Now consider some special cases, which are identified by 
parameters ),,( λκη . For example, a quantity Q pertaining to a 
chain characterized by ),,( λκη  is denoted by ),,( λκηQ , etc. 

1=== λκη  

This is a perfect monatomic chain composed of infinite oscillators 
of mass m interacting with their nearest neighbors through K. Its 
recurrants are ,...)1,1,1,2()1,1,1( =σ , and subset ,...)1,1,1()1,1,1(1 =σ . 
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where the following formulae are used:
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is used. Thus the memory function is

M 







+=∆= ∑∑ ∫

∞

= =

)2(sincos)(812)1,1,1;()1,1,1()1,1,1;( 2
1 1

2/

0

22
11 tJdnctbt n

n

n

j

j
j

π
θθθ

π









+=∆= ∑∑ ∫

∞

= =

)2(sincos)(812)1,1,1;()1,1,1()1,1,1;( 2
1 1

2/

0

22
11 tJdnctbt n

n

n

j

j
j

π
θθθ

π
.             (5.8)

1== λκ
This is a monatomic chain with a mass impurity 0m . Its recurrants 
are σ(η,1,1) = (2η,1,1,1,1), ηη 2)1,1,(1 =∆ , ,...)1,1,1,1()1,1,(1 =ησ , 
it is the same as )1,1,1(1σ . )1,1,;( ηzb  has no poles but a cut, and 

)1,1,1;()1,1,;( 11 tbtb =η  given by (5.6). The memory function is then 
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λ = 1
This is a monatomic chain composed of oscillators m and a full 
impurity η/0 mm = . The oscillators m interact with their nearest 
neighbors through K while the impurity 0m  interacts with its two 
nearest neighbors through KK κ=0 . This case is studied [21] and 
its memory function is [31]
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where 1/ −= κκµ  is the frequency and  
is the amplitude of the resonant vibration.

1== κη  

This is a perfect diatomic chain composed of two kinds of oscillators 
m1, m2 interacting with their nearest neighbors through Hooke constant 
K. Choose one oscillator m2 as m0: m0 = m2, then η = m1/m0 = m1/m2 
= λ. Its recurrants are given by 



Volume 3 | Issue 1 | 7 of 14J Adv Mater Sci Eng, 2023

[18], Δ1(1,1,λ) = 2λ, and ,...),,1,1,,,1,1(),1,1(1 λλλλλσ = . Thus 
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It has a pair of poles 2i±  and three branch cuts. However, 
the residues of ),1,1;(1 λzb  at poles 2i±  are found zero, b1
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 Next we calculate )(tG  with differentλ . 

Acoustic branch 
For 1<λ  )0( acby <<≤≤ we have 
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the auxiliary integrals are 
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where cn(u,k), dn(u,k), are Jacobian elliptic functions and K(k) the 
complete Legendre elliptic integral of the first kind. Making use 
of (5.5) we get 
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Then (5.15) becomes 
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where (5.7) is used. Hence, the acoustic contribution is given by 

 








<+<−=< ∑∑∫

∞

= =1
2

1

~

00 0

2

1 )()1,1,1()(2)1,1,1()()1,1,1;(
n

n

n

j

aco

jj
acotaco bJUncUcctJdabtb τλλττ

πλ
λ .  (5.20)

For 1>λ  )0( abcy <<≤≤ , we have 
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In Appendix B, we get
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Legendre elliptic integral of the first kind.
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in which (5.7) is used.

The acoustic contribution is then given by 
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In (5.20) or (5.25), ),1,1;(1 λtbaao  is expressed as a convolution of 
a zero-order Bessel function and an even-order Bessel function 
expansion. The expansion coefficients are integrals of Jacobian 
elliptic functions.

Optical branch 
If 1<λ  )0( aycb ≤≤<< , then
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are auxiliary integrals. In Appendix C, we derive that 
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Thus 
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and the optical branch is

                      (5.29)
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The only difference between (5.31) and (5.26) lies at the lower 
limit of integration. Thus (5.30) reads 
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In Appencix C, the auxiliary integtals are obtained as 
 ∫−=>

)'(

0

4
0 )'()1,1,1(

pKopt dvpipV λ  )'.()'.( 22 pvsdpvcd ,          (5.33a)

 
∫+−=>

)'(

0

412
~

)'()1,1,1(
pKj

opt

j dvpipV λ  )',()',()',( 222 pvndpvsdpvcd j . (5.33b)

So we have the optical branch 
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In (5.29) or (5.34), the optical branch is given by a convolution 
of a zero-order Bessel function and an even-order Bessel function 
expansion. The expansion coefficients are integrals of Jacobian 
elliptic functions along a contour )( pKu =  parallel to the imaginary 
axis in the  u+iv plane.

In addition, the modulus of the elliptic functions in the two 
branches are related to each other.

In fact, if 1<λ , )1/(22 +== λλpk , thus k  and 'p  are 
complementary to each there; if 1>λ . λ/12 =l , 1/' 2 += lp λ , 
l  and 'p  are related to each other also. 
Therefore, the memory function of a perfect diatomic chain is as 
follows:
M [ ])1,1,1;()1,1,1;(2)1,1,1;( 11 <+<=< λλλλ tbtbt optaco ,     (5.35a)

M [ ])1,1,1;()1,1,1;(2)1,1,1;( 11 >+>=> λλλλ tbtbt optaco .         (5.35b)

1=κ  

This is a diatomic chain composed of oscillators of masses m1, 
m2 and a mass impurity m0. All oscillators interact with their 
nearest neighbors through Hooke constant K. The recurrants are 
given by ,...),,1,1,,,1,1,2(),1,( λλλληλησ = , ηλη 2),1,(1 =∆ , and 

,...),,1,1,,,1,1(),1,(1 λλλλλησ = , the same as ),1,1(1 λσ , hence 
),1,1;(),1,;( 11 λλη tbtb = . 

Therefore, the memory functions of this chain are given by
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M [ ])1,1,;()1.1.;(2)1,1,;( 11 >+>=> ληληηλη tbtbt optaco
        (5.36b)

where )1,1,;(1 <ληtbaco , )1,1,;(1 <ληtbopt , and )1,1,;(1 >ληtbaco , 
)1,1,;(1 >ληtbopt  are given by (5.20), (5.29) and (5.25), (5.34), 

respectively.

Discussion 
In the proceeding sections, we have examined memory functions 
of different chains. We find that a perfect monatomic chain ),1,1( λ  
and a monatomic chain with a mass impurity ),1,( λη  have the same

,...)1,1,1()1,1,()111( 11 == ησσ , thus )1,1,;()1,1,1;( 11 ηtbtb =  given by 
(5.6). However, the two chains have different 1∆ , hence they have 
different memory functions given by (5.8) and (5.9), respectively.

Similarly, a perfect diatomic chain ),1,1( λ  and a diatomic chain 
with a mass impurity ),1,( λη  share the same recurrants in 1S : 

,...),,1,1,,,1,1(),1,(),1,1( 11 λλλλλησλσ == , thus they have same )(1 tb . 
Because of their different λλ 2),1,1(1 =∆  and ηλη 2),1,(1 =∆ , they 
have different memory functions given by (5.35a, b) and (5.36a, 
b), respectively.

On the other hand, we notice that only if a monatomic or a 
diatomic chain has a full impurity, has its )(1 tb  both pole and cut 
contributions, otherwise, the chain has cut contribution only, i.e. 
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Conclusions
In this paper, the memory function of a full impurity in a diatomic 
chain is derived by means of the recurrence relations method. The 
memory function is contributed by poles and cuts. The former 
result in a cosine and the latter in acoustic and optic branches. Both 
branches are given by a convolution of a difference of two sines 
and an expansion of even-order Bessel functions. The expansion 
coefficients are integrals of elliptic function sn(u) along the real 
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axis in a complex plain for the acoustic branch, and integrals of 
elliptic function nd(v) along a contour parallel to the imaginary 
axis in that plane for the optical branch, respectively. 

Different special cases are examined and corresponding memory 
functions are derived. It turns out that a perfect monatomic chain and a 
monatomic chain with a mass impurity share the same )(1 tb , but their 
memory functions are different because of their different 1∆ . Same 
are true for diatomic chains. Besides, the memory function has pole 
contribution only if the chain has a full impurity, i.e. 1≠κ .
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Appendix A  

Now we derive general expressions (3.15a, b) based on calculation of the residues of function  
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at poles im± , in±  and on the signs of ),( λκmD , ),( λκnD  in different regions shown in Table 1.  
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It is able to show, especially easy to verify numerically that  
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, . (A.4) 

Thus in Region dIII  the amplitudes are given by  
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Similarly, by the same considerations we obtain the amplitiutes M and N in different regions.  

Region uIII : 0),( <λκmD  and 0),( <λκnD . 
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Region dII : 0),( >λκmD  and 0),( <λκnD  
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021 =−= NNN .                                    (A.7b) 
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Expressions (A.5) ~ (A.10) for M  and N  are indeed (3.15a, b).  
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In this appendix, we derive (5.23a, c).  
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Thus in Region dIII  the amplitudes are given by  
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Similarly, by the same considerations we obtain the amplitiutes M and N in different regions.  
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Expressions (A.5) ~ (A.10) for M  and N  are indeed (3.15a, b).  

 

Appendix B  

21 MM = 21 NN =



Volume 3 | Issue 1 | 13 of 14J Adv Mater Sci Eng, 2023

∫ +−
−=>

)(

0 2/522
2

22
22

2

~

)],(1[
),(),(),()1()1,1,1(

lK

j

jaco

j
lucnl

lusnludnlucndulU λ .                 (B.10) 

(B.8)- (B.10) give (5.23a, b, c). 
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By addition theorem [32], the complex elliptic functions may be replaced by real elliptic functions. With arguments 

similar to [18, especially in Appendix A], we obtain  
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i.e. (5.27a, c). The contour )( pKu =  is parallel to the imaginary axis in the ivu +  plane. 
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i.e. (5.33a, b) 
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(B.8)- (B.10) give (5.23a, b, c). 
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