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ABSTRACT

The memory function of an impurity with different mass and Hooke constant in a classical diatomic chain is
studied by means of the recurrence relations method. The Laplace transform of the memory function has two
pairs of resonant poles and three branch cuts. The poles contribute a cosine and the cuts contribute acoustic and
optic branches, which are expressed as a convolution of a difference of two sines and an expansion of even-order
Bessel functions. The expansion coefficients are integrals of Jacobian elliptic function sn(u) along the real axis
in a complex u+iv plane for the acoustic branch, and integrals of nd(v) along a contour parallel to the imaginary
axis of the plane for the optical branch, respectively. Different special cases are discussed in detail. It shows that a
perfect monatomic or diatomic chain and such a chain with a mass impurity share the same memory function except for
a constant factor, and that the pole contribution exists only if the impurity has both different mass and Hooke constant.
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Introduction

Harmonic oscillator chains are used as models in the study of
solid-state physics [1-4]. The normal coordinates method was
used in most of the early work. Since early 1980s the recurrence
relations (RR) method has been developed [5-7] and applied to
various areas in physics, for example, two-dimensional electron
gas [8], a relativistic plasmonic Dirac electron gas [9] and spin
dynamics of different models, etc. [10-14].

The RR method is also used to study oscillator chains, e.g., a
monatomic chain without [15] or with a mass impurity [16], a
Bethe lattice [17], a diatomic chains without [18] or with a mass
impurity [19,20], a monatomic chain with a full impurity, i.e. an
impurity with different mass and Hooke constant [21] as well as a
diatomic chain with a full impurity [22], etc.

It is well known that a generalized Langevin equation involving
a memory function was introduced by Mori [23] in a projection
operator approach and was derived later by Lee using the RR
method [7]. The memory function method has been applied to
different physical models, such as the analysis of classical dense
fluid and Heisenberg ferromagnets [7], spin-1/2 van der Waals
model [24], two-dimensional dense electron gas at 7= 0 [24,25],
quantum one-dimensional XY-model [26], the long-time tail effect
of the correlation function [27], as well as in solving the Liouville
equation [28], etc. For a review of its applications c.f. [29]. The
memory function of a full impurity in a monatomic chain is also
studied by means of the RR method [21].

The purpose of this paper is to study the memory function of
a full impurity in a classical diatomic chain. It turns out that
the Laplace transform of the memory function has two pairs of
resonant poles and three separate branch cuts. The poles contribute
a cosine and the cuts contribute acoustic and optical branches.
Both branches are expressed as a convolution of a difference of
two sines and an expansion of even-order Bessel functions. The
expansion coefficients are found the same as those obtained for the
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momentum autocorrelation function (ACF) of a mass impurity in
a diatomic chain [20] except for a constant factor. Thus, we can
directly employ the results of [20]. The expansion coefficients are
integrals of Jacobian elliptic function sn(u) along the real axis in
a complex u + iv plane for the acoustic branch, and integrals of
elliptic function nd(v) along a contour parallel to the imaginary
axis in that plane for the optical branch, respectively.

The memory functions in different special cases are also examined.
It turns out that the memory function of a chain with a mass
impurity is the same as that of a perfect chain except for a constant
factor, and that only if a chain has a full impurity has its memory
function a contribution from the poles. These are true for both
monatomic and diatomic chains.

The paper is organized as follows. In Section 2 an outline of the
recurrence relations method is presented and the model is briefly
studied in general. The pole and cut contributions to the memory
function are respectively derived in Sections 3 and 4. Some special
cases are examined in Section 5 and conclusions are drawn in
Section 6.

Method and Model
In this section we briefly review the recurrence relations method
and our model.

The Recurrence Relations Method
A dynamic variable A(f) of a system may be expanded in a
Hilbert space [5-7],

A=Y a,0)f, .

where f, (v =0,1,...,d —1) are orthogonal basis vectors which
spanaspace S , the expansion coefficients {a ()} are real functions
bearing the time dependence of A(#) . The vectors {f, } satisfy a
set of recurrance relations

fv+1 =Lfv +Ava715 (VZO, f71 :O, AO El)’
where L is the Liouvillian operator of the system,
A, =(f,,/.)/([,_1»f,1) are recurrants, and inner product
(4,B) = H'[dpidqie’/’lHAB/HJ.dpl.dqi_ﬂTH defines the space.

H is the Hamiltonian and /3, the inverse temperature. Similarly,
{a (1)} satisfy the fllowing recurrence relations:

Aty ()= —av()+a,,() (0<v<d-1, a =0)

with & (f) = da(f)/dr. The time evolution of A(f) is
characterized by the dimensionality d of S and the recurrants

0= (Al! AZ! ey Ad—l)‘
Now introduce a subspace S|, which is spanned by basis vectors

{15 fases S} . A variable B(¢) in S, may be written as

d-1
B(t) = va (t)f,» Where {b,(t)} is a set of complete linear
v=l
independent real functions satisfying the recurrence relations:
A,by () ==bv()+D, (1) 1Sv<d-1, b, =0)

The Laplace transform of b,(#) may be expressed in terms of
recurrants o, = (A,,A;,,...,A, ), asubsetof 0 :

b(z)=1/(z+A, (z+A; (z+..A, ]/ 2))). .1
It is a continued fraction.
The time rate of @, () may be written as [7]
a,(f) = ~[ldz M(@)ay (7).
It is a scalar generalized Langevin equation in which
M(t) = A,by (1) 2.2)

is the memory function.

The Model

A diatomic circle chain is composed of classic oscillators m,,
m,and an impurity m,. Oscillators m, locate at sites ¢, .5
m, at q,, ., and m, at g,. The oscillators m,, m, are in
interaction with their nearest neighbors via springs with Hooke
constant K, and the impurity m1, interacts with its two nearest
neighbors m, through springs with Hooke constants K ,. The total
oscillator number N is even. The periodic boundary conditions

dv/2=9-ny,and g, ,, = q_,,, are imposed.

The Hamiltonian of the model chain is given by

2
H=2Lo |

1 2 1 2 KO 2 2
= S S +—[q, - +(q, — +
o, 27, 2, ;ph Sl40 =407+ (@ -q0)’]

2m, 7

+§[(CI1 _(’IZ)Z +(q, _‘I3)2 +ot (g, _qu)z +(q., _971)2]

The recurrants of the model o = (A,,A,,A,,...,A,,) are derived as [22]

where n=m,/m,, A=m;/m, and k =K,/K are parameters.
o is a sequence with periodicity four.

With (2.3), (2.1) reads

b )=l z+xl(z+1(z+ANz+A/(z+1/(z--))))))
or b (z) =1/(z+x/R), where
R=z+1/z+AN(z+Al(z+1/z+..))),0r
R=z+1/z+A/(z+ A/(z+1/R))).Itis a quadratic
equation with solution R =[z+ §,(2)]/ 2,
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Sy(2) =22 +24+2)(2* +2) (2% +22)* (24)
thus S
b(z)=— 2+5,() . (2.5)
z7+2x+25,(2)
After some algebra, we have
1 (k-2)2° +2(kA—A -1z +&5(2)
bl (z2) == 4 2 2 2
2(k—Dz" +(k" +26A—-A—-1)z" +2k° 1,
S(z)= (22 +a®)2> +b*)(2* +cP) | 2.6)
and
a’ =2(A+1),b> =21, 2 =2. 2.7)
Write it as 1 N S
bl (Z) — (K_ )Z +plZ + (Z) , (28)
2(k—1) D(z)
where
p,(2)=2(kA-A-1), (2.9)
D(z)=z"+d,z* +d,, (2.10)
2 . 2
d2:K +2kA-A1 1,d0=2K/1 @.11)
K—1 K—1
are coefficients. D(z) may be written as
D(z)=(z> +m*)(z*> +n?), (2.12)
2
m2:£+A,n2:d—2—A,A= d—z—do. (2.13)
2 2 4

Thus we have
| (k=2)2" + pz+uy(2> +a* )2 +b7) (2 +c?)
(x=D

bl (Z; K’Z’) = 2 2 2 2 .

2 (zZ+m™ )z +n") (2.14)
It has two pairs of resonant poles +im, +in and three branch cuts
with endpoints at +ia, +ib and +ic. Thus, we have

b (z;x,A) = b/ (z;5, ) + b (z;5, ) + b (236, A) . (2.152)
b,(t;x,A) = b (t;x, 1) + b (t; 5, 1) + b (t;, 1) . (2.15b)
The initial condition is given by

b, (0;5,2) = b (035, A) + b (03, 1) + b (0;, A) . (2.16)

The Pole Contribution
Frequencies
By (2.14), we have

b (t;x,A) = M cosmt + N cosnt ,

with frequencies

m(k,A)=4d,/2+A, n(k,A)=4d,/2-A. 3.1
The amplitudes M and N will be derived later. Besides, we obtain
(Wm’* +n>=d,, m* —n’> =2A, m’n’ =d,. (3.2)

(2) In the limit k¥ —> 1,

m(1,,2) = lim m* (k, 2) = o0.. n*(1LA) = Liil?nz(lc,ﬂ) =2,o0r

m(l,,A) —> o, n(LA)=+/2 . (3.3)

In this limit exists mode 7 only.
(3) Write (2.13) as
(o, 2) = — [A+\/A2 —B],

2(x—1)

! [A—\/AZ —B],

2(k—1)

n’(x,A) =

(3.4)
where

A=K’ +2kA-A-1, B=8x*(x —1)A,

A - B = \[K* —2xA—A—-D? +4K>(A-1).
When A =1:
me,l) = —
V-1
When A =k —1:
m(K‘,K‘—l)Zﬂ,n(I{',K’—l):\/;. (3.7

. . 2 2
(4) Since m, n are frequencies, so m~, n~ must be real and
non-negative:

N>0,d;>4d,,or A=0, d, =2,/d,

determining a curve . At any point in the curve, the two frequencies
are equal:

mi;=n,=d,/2. (3.92)
m,(x,,A,)=n,(x,,4,)=(d,/2)"* =(d,)"*. (3.9b)
Frequencies m(k, A) and n(x,A) are plotted in Figures 1 and 2.

3.5)

n(x,l) = V2.

(3.6)

(3.8)

In Figure 1, when x —>1,, m(x,A) > o and n(l,4) =xr2, ie.
(3.3). All curves n(x,1) cross point (1,42), ¢.f. (3.6). In Figure 2
we see something unexpected: Curve m(4,4) crosses m(7,4) at
about 4 =4.5, and it looks to cross m(10, 1) somewhere outside
the figure. This happens because m(4,4) has larger slope than
m(7,4) and m(10, A) at, say, 1 =2, 3, 4, etc.

Indeed, recall (3.4), we obtain
Qx-1DA-4x*(xk—1) )
A>-B

im(lc,/l) 2K —1+

a2 " Ax—ym

Then we numerically calculate and compare the slopes of m(4, 1),
m(7, 1), m(10, A) with different values of A and confirm that
d d d
—m(4,4) > —m(7,4) >—m(10.,4) at 4 = 2,3, 4, etc.
d/l()d;t()d/l()a etc
Thus with a given A, (d/dA)m(x, 1) decreases with increasing
K, so curve m(x,A) becomes flatter with largerk, i.e. curve
m(x,A) crosses those curves with larger K .
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m(x) & n(x)

|
m—- | I -
- & i Y 5 )

Figure 1: The «- dependency of m(k) and n(x) with different /.

m(A) & n(A)

15 2 25 3 35 4 45 5

Figure 2: The A - dependency of m(%) and n(2) with different «.

Regions in the kK - A4 plane

Now introduce a x - A plane. By (2.14), b,(z) has two pairs of
resonant poles xim and +in. We try to determine which mode, m
or n, contributes to the memory function in a certain region.

Write (2.5) as

b(z)zw, (3.10)
1 D, (z) +z8(2)

Dy(2) =z +2(k + A)z” + 4K (3.11)

Thus we have

(k=2)z° + p,z+K5(2)
(22 +m*)(z* +n?)

2’ +20z+8(2) 1
D,(2)+28(z)  2(xk—1)

At poles +im and zin,

b(z;x,A) =

[Dy(2)+25(2)] .. =0.

poles

(3.12)
Introduce

Dy (m) = D, (xim) = m* — 2k + Aym* + 44 = (m* —22)(m* - 2x) (3.13a)
Dy(n) =D, (xin) =n* = 2(x + M)n*> +4xd = (n* —21)(n*> - 2x) (3.13b)

In (3.12), the sign of D,(m) or Dy(n) plays an important role in
determining the mode m or n. Setting D,(m)=0 and D,(n)=0
yields m?, n* = 24,2k . Setting m> = 2k yields k=1 and A=x—1;
setting m? =21 gives A =1. Same are true for n’. Thus, we have

—1, A=x-1
If (m* or n?) = 2K,then K =
24 A=1
LinesA =1, k=1 and A =k —1 divide the K - A plane into

Six regions m, m, i, 1,1, and 1, shown in Figure 3.

i K—A plane

3
=1

L A=t—1
2 - oI, n,

= I,

A=1

1

_ i, 1, I

1 ] [ [ [ K

0 1 2 3

Figure 3: The regions in the k - A plane.

Numerical calculation of D (x,4) and D, (x, 1) gives their signs
in the vicinities of lines 4 =1 and A = x —1 listed in Table 1.

Table 1: Signs of D, (x,4), D, (x,A) in the vicinities of lines A
=landAl=x-1.

Region 111, 11, 1, I, 1, 1,

D, (x,1) + - 1 1 - -

D, (x,A) + - - + - -
Amplitudes

In Appendix A, amplitudes M and N are derived by taking into
account the signs of D, (x,1), D, (x,A) in(3.12) shown in Table
1 and calculating the residues of function
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1 (k=22 + pztiy(2> +a )2 +B7)(2 o)
2(k—1)

h(z)= (3.14)

(> +m*)(z* +n?)

at poles *im and =Zin in different regions. The results are as
follows:

k=2’ —py _mfm’ —al )’ =0 =) (345,
2(k — 1A 2(x =1)Am

@0t +p, i’ @)’ —b)(n’ =) (3,15b)
2(k —1)A 2(x —1)An

By (A.5a, b)~(A.10a, b), we have the mode and amplitude in
different regions shown in Table 2.

Table 2: Mode and amplitude in different regions.

m, m I, I I,

u u
n N m. M n N m, M

Region
Mode & Amplitude

none

Comparing Table 1 and Table 2 we reach the criteria:

In the physical region of mode m or n, respectively holds the
inequality

D, (x,2)<0, D, (x,1)>0.
Therefore, the pole contribution in different regions are as follows:

M cosmt 1,

(3.16)

b’ (t;x,A <1)={ Ncosnt inregion {1,

0 I,

(3.17a)

ol Mcosmt |1,
b (t;k,A>1)= in region / . (3.17b)

N cosnt
The amplitudes are subject to | M (x,A)|<1 and | N(x,A) [<1.

The Cut Contribution
Now consider the cut contribution to the memory function.
Since (x —2)z* + p,z in (2.14) contributes nothing to bf'” (?), thus

K NG +a)E +67)E + )
2(x-1) (22 +m*)(z* +n?)

b (t;5k,4) = 4.1)

here L denotes the Laplace transformation.
Write the integrand as f(z)g(z), take f(z) =[(z* + m*)(z* +n?)]™

and g(z) = /(2% +a*)(2* +b*)(z* +¢?) » then
()] = msinnt — nsin mt

mn(m* —n’)

G(t) = L'[g(z)]= L§ a’z\/(z2 +a’)(z> +b*)(z +cP)e”’
27 °¢

F(H)=L (4.2)

and

b (1) = 2 -0)G(r) = 2 7). (43)
Here G(r) depends only on 4, i.c. independent of the impurity.
Moreover, (4.3) is the same as Eq. (18b) in Ref. [20] except for a
constant factor a = 5/(2y-4), so we can write down G(¢) directly.
In the following we refer Ref. [20] as I and denote, say, Eq. (18b)

in Ref. [20] as Eq. (I.18b), etc.

Acoustic branch
If A<1 (0<y<bh<c<a).By((l4la),

2ab*c

G (A< 1) =" S[U& (A< 1)+ 2220 (n)U (i <D/, (0], (4.4)

n=1 j=1

where {cj(n)} are expansion coefficients, v (1 <1) and ¢, (1<1)
are auxiliary integrals, their expressions and relevant quantities are
respectively given by Eqgs. (1.36) and (1.40) etc. Thus the acoustic
branch is

b (t,x,A<1)=

ab?ck

(= Dmn(m2-n?) _r dr[msinn(t — x) — nsinm(t — )| x

. aco

[U&(A<1)+ 222(: MU, (A<1)J,,(b1)]-

n=l j=1

IfA>1 (0<y<c<b<a).By.(L56a),

(4.5)

G (4 >1) = 2abe”

U (A >1)+ 222c (n)U (/1 >1)J,,(ct)], (4.6)
n=1 j=1

where U (1 >1) and U (}t > 1) are given by (I.51) and (1.55),

respectlvely

The acoustic branch is thus

wo abc?k " . )
b (t;k,A>1) = e J.O dr[m sinn(t — k) —nsinm(t — K‘)]X

m(k—1)mn(m?—

[Us(A>D+2D > c.(mU; (A>1)J,,(c7)].
n=l j=1

The acoustic branch is expressed as a convolution of a difference
of two sines and an even-order Bessel function expansion. The
expansion coefficients are integrals of elliptic function sn(x) along
the real axis in a complex u+iv plane. Besides, [, Jeo(A) can be
expressed in terms of Legendre elliptic integrals of the first, second
and third kind [20].

(4.7)

Optical Branch
If A<l (0<b<c<y<a).By(.77a),

2a’be

G¥ (A <1)= (4.8)

SOy (g < 1)+ ZZZC (n)I}/ (A <1)J,, (an)]-
n=l j=1
. opt
Integrals v (4<1), ¥, (A<1) and relevant quantities are

respectively shown in Egs. (I.73) and (1.76), etc. The optical
branch reads

a’bex

b (tx, A <1) = Ltdr[msinn(t—K)—nsinm(t—z()]x

m(x—1)mn(m2-n2)

[V (A <1)+ Zi zn:cj (n) I}jpt “A<DJ,, (ar)]- (4.9)

n=1 j=1

IfA>1 (0<c<b<y<a).By(l.88a),
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2 o n - opt
G725 =2 o0 12X Y e 7 (0, (4410)
0 n=l j=1
opt

and auxillary integrals ¥;”"(4>1) and v ; (A>1) are given by
(1.85) and (1.86), respectively.

The optical branch takes the form

a’bek

b’ (tk,A>1) = 5 J.;dr[m sinn(t —x)—nsinm(t - K)]X
n

(k= Dmn(m* —

0 n ~ opt
V" (A>D+2Y > c.(mV; (A>1)J,,(ar)]- (4.11)
n=1 j=1
The optical branch is given by a convolution of a difference of two
sines and an even-order Bessel function expansion. The expansion
coefficients are integrals of elliptic functions nd(v) along a contour

parallel to the imaginary axis in the complex u+iv plane.

In fact, the expansion coefficients for the optical branch are
originally obtained as integrals of complex elliptic functions
sn(u+iv). By means of the addition theorem [30], the complex
elliptic function is replaced by a real function nd(v).

Finally, we obtain the memory functions
M (6;5,4 <1) =25k (656, A < 1)+ b (65, A < D)+ b7 (t;x,A < 1)]. (4.12a)
M (65,4 > 1) = 2px[b (t; 5,2 > 1)+ b (t; 5,4 > D) + b (t;x, 2 > 1)]. (4.12b)

Since the cut contribution is given by a convolution, the initial
condition (2.16) is not appropriate. However, after the time integral
is worked out, (2.16) applies.

Special cases

Now consider some special cases, which are identified by
parameters (77, x,4) . For example, a quantity Q pertaining to a
chain characterized by (7, %, 1) is denoted by O(,«, 1) , etc.

This is a perfect monatomic chain composed of infinite oscillators
of mass m interacting with their nearest neighbors through XK. Its
recurrants are o(1,1,1) = (2,1,1,1,...) , and subseto, (1,L1) = (LLL,...) .

b, (z;1,1,]) = (1/2)[— z+z2 + 4J.

It has a branch cut between [-2, 2] but no poles. Thus

) _1p 2
(5L =— [ [dvJ4= y* cos(yr)-
Sety = 2sin @ ,thenp (1;1,1,1) = (4/ ) jo’”zde cos? 0 cos(2t cos 0)

(5.1)

Making use of .
cos(atsin @) = J,(at) +2)  J,, (at)cos(2n0) - (5.2)
n=1
we obtain 4 B
b, (11,]) = [UO (LLYJ,(20)+2> U, (LL1)J,, (2;)} , (5.3a)
T n=1

where

U,(1,L)= j:/zdﬁcosz Ocos(2nd) (n=0,12,..). (5.3b)
Thus
/2 2 T
— —_—— 5.4

U,(LL1) jo dfcos’ 0= (5.4a)
U, =3+ Y, ] d0cos’ Osin®l 0 (1=1.2,..), (5.40)

j=1
where the following formulae are used:
cos(2nf) =1+ ¢, (msin® 6 (n=1.2,...), (5.5a)

Jj=1
(=M AU SDY) | a2 (55b)

2! 4! 6!
Hence we obtain
L) =1+ 23 e )" docos’ bsin® 0 J,, (), (5.6)
T =1 =1
where
Jo 20 +2) J,, (20 =1 (5.7)
n=1
is used. Thus the memory function is
M (#LLD) = A, (LD, (£1,1,1)
8 & & /2 L

=2l1+=> Y ¢, (n)J.0 dfcos’ Osin* 0J,,(2t) |-  (5.8)

T n=1 j=1

k=A1=1

This is a monatomic chain with a mass impurity m, . Its recurrants
are o(n,1,1) = 2n,1,1,LL1), A @LD) =27, o,@.L)=(LL1.),
it is the same as o, (1,1,1). b(z;n,1,1) has no poles but a cut, and
b, (t;n,1,1) = b, (£;1,1,1) given by (5.6). The memory function is then

M (#7,L1) = A, (.L.)b, (£;17,1.])

= 277{1 + EZZC]- (n)L”/za’Hcos2 Osin* 6J,, (2t)} .
T =l j=1

A=1

This is a monatomic chain composed of oscillators m and a full
impurity m, = m/n . The oscillators m interact with their nearest
neighbors through K while the impurity m, interacts with its two
nearest neighbors through K| = xK . This case is studied [21] and
its memory function is [31]

(5.9)

1
‘K_l

M (7, x.1) = 277K{M(K‘,1) cos( )+ f(f d Tsin u(t - 0)[J, (27) + J, (22’)]} ,

(5.10)

where y = x/+/k-1 isthe frequencyand M(x,1) = (k —2) / (x — 1)
is the amplitude of the resonant vibration.

n=x=1

This is a perfect diatomic chain composed of two kinds of oscillators
m,,m, interacting with their nearest neighbors through Hooke constant
K. Choose one oscillator m, as m: m, = m,, then n =m /m,=m /m,
= . Its recurrants are given by o(1,1,4) = (24,1,1, A, L,LLA, A,...)
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[18],A (1,1,4) =24, and &, (LLA) = (LL A, ALL A, ... . Thus
V@ +a) 2 +b7) 2 +cP)

z2 42

1 22 +42z—

b, (z;1,1,4) =37 (5.11)

It has a pair of poles +j/2 and three branch cuts. However,
the residues of 5 (z;1,1,1) at poles +iy/2 are found zero, b
(t:1,1,4) = 0. Hence b, (£;1,1,4) results from three cuts only:
b (z;LLA) = b“” (z 1,1,1). Since ¢’ =2, so

b(tlli)—— §dzb(z1m)e2’

v&ihere
bl(z;l,l,/l)=\/(z +a?)(z? +b)

Z +C
Set bi(z) = f(2)g(2)» f(z2)=1/z" +c >

g(z) = \/(z2 + az)(z2 +b2) , then

F(@O) =L f(2)]=J,(ct), G(t) = L™ [g(2)] and
1 ¢

b (511,2) = ﬁfo di,(ct - ct)G(r)

Next we calculate G(¢) with different 4 .

(5.12)

(5.13)

(5.14)

Acoustic branch
For A <1 (0< y<bh<c<a)wehave

G (112 <) =2 [ dyia® — 37— 37) cos(r)-
z
Setting y = bsin @ and making use of (5.2) yield

G L, A<])
2ab2

[U& 11,4 < 1), (bt) + ZZU“” ALA <D, (br)]> (5:15)

n=1

the aux111ary integrals are

U LA<D =" doN1-k*sin® 0 cos® fcos(2n6)

(n=012,---, k> =(b/a)’> =A(A+1)<]). (5.16)

We have
y K (k)
Us (LA <D = [ du cn® (u, k)dn® (u,k)> (5.17)

where cn(u,k), dn(u,k), are Jacobian elliptic functions and K(k) the
complete Legendre elliptic integral of the first kind. Making use
of (5.5) we get

U (LLA <) =U (LA <D+ iq(n)&jma“ > (n=12,..) (5.182)

. aco

U, (LLA<1)= L“’"du en? (u, k)dn® (u, k)sn® (u,k).  (5.18b)
Then (5.15) becomes
G (LA <1) = 2987 [U (11/1<1)+222c (n)U (111<1)J ()|, (5.19)

where (5.7) is used. Hence, the acoustic contribution is given by

b (tLLA<1) =

jdﬂ (ct— cr){U” (11/1<1)+222c (n)U, (llﬂ<1)J2n(br) (5.20)

For 1>1 (0<y<c<b<a),wehave

GtLLA>1) = EL”dy,/(az —y)(b* = y*) cos(yt) - Set y =csin@, then
T

G (11,4 > 1) = 29b¢ S U (L1, A > 1), (e0)]- (5.21)
T =1

0 0

The auxiliary integrals are

/2
uLLa>1)= J.O dé’\/(l — 17 sin @)(1- 12 sin §) cos @ cos(2n6)
(n = 091327"'7) ’
112 =(c/b)’ =1/2<1, 122 :(c/a)z =1/(A+) <1, 0<l22 <112 <1.

(5.22a)

(5.22b)
In Appendix B, we get
2
U A ) ==y [ LEDD@D (s 050
[1-ILen” (u,l)]
n ~ opt
U LLA> ) =US ALA> D)+ Y e, (U, (LA>1): (523b)
j=1
_ aco 2 2j
U, (Wa>) == [ g eDd D (D), (5.230)

[1-en®(u, )7

where 1> =(1} -13)/(1-1;)=1/A<1 and K(I) is the complete
Legendre elliptic integral of the first kind.

Thus (5.21) reads

G (11,4 >1) =

2abe {U”‘”(l A<D+ ZiZC (n)Um(l LA>1)J,, (ct):|

n=1 j=1

(5.24)

in which (5.7) is used.
The acoustic contribution is then given by
B (LA > 1) =

aco

jdz/ (ct— cr){U§°(llﬂ>l)+ZZZC mU; (LLA>1DJ,, (cr)} (5.25)

abc
In (5.20) or (5.25), b (t;1,1, 1) is expressed as a convolution of
a zero-order Bessel function and an even-order Bessel function
expansion. The expansion coefficients are integrals of Jacobian
elliptic functions.

Optical branch

If A<1 (0<b<c<y<a),then

"f"(1111<1)——j dyJ(a® = y*)(b* = y*)cos(yt). By y =asinf
and (5.2),

G (ELLA<1) = a’b

where

yraLA<l) = j:/ZdGWCOSZ O cos(2n6)
(n=0,0,2,..r% = (a/b)* =(A+1)/ 2> 1).

are auxiliary integrals. In Appendix C, we derive that

S LA <D (an) + 22 Vo (LA < ), (ab)]’

n=1

(5.26)
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K(p"
VLA <D ==ip(p) [ dv cd® (v, p)sd* (v, p)- (5.27a)

n ~ opt
VO LA<D) =V LA<)+Y e, MV, (LLA<]). (5.27b)
=

_opt

Vi ALA<)=-ip" (p) [ dv ed® (v, p)sd® (v, pynd™ (v, ")
' (5.27¢)

Thus

Y 2a’b| . .. & = ovt
G (1L A<]) = . [VO" ALLA<D+2D e,V ,; LLA<DI,, (at)}

n=l j=1

(5.28)

and the optical branch is
b (1L, A< 1) =

“—ZJI‘ de,(ct —cr)[v(;ﬂf (LLA<D)+ 2iz":c,(n)l?jm (LL,A<1)J,, (ar)} (5.29)
. 0

n=l j=1

If A>1 (0<c<b<y<a), then
G (tLLA>1) = EJ‘: dy\/(a2 —y2)(b* — y*) cos® Bcos(yt) .
z

Similarly, set y = asin@ (sin6, =b/a), then

G? (L, A>1) =
24°b W (L1,A > 1)J, (at) + 2i Ve (11,4 > 1), (at)]’ (5.30)
o
with
Vo LA > 1) = j;”dem cos? @cos(2n6)
(n=012,.,7° :(7a/b)2 =(A+1)/A>1). (5.31)

The only difference between (5.31) and (5.26) lies at the lower
limit of integration. Thus (5.30) reads

G” (ELLA>1) =

2 © n _ opt
2a’b VLA > D23 e )V (LA > 1), (ar) |- 5-32)
T n=l j=1

In Appencix C, the auxiliary integtals are obtained as
Ve (LA > 1) = —ip(p')’ jo'“’”dv cd*(v.p')sd>(v.p'),  (5.33a)

opt

V, LLAS1)= —ip2f+‘(p')4LK(p')dv ed* (v, p')sd® (v, p'ynd® (v, p')- (5.33b)
So we have the optical branch
b (ELLA>1) =

%’ L i, (ct —cr){VO"‘" ALA> 1)+ 2iic1 () r?jp’ LLA> 1), (a f)} .(5.34)
In (5.29) or (5.34), the optical branch is given by a convolution
of a zero-order Bessel function and an even-order Bessel function
expansion. The expansion coefficients are integrals of Jacobian
elliptic functions along a contour u = K(p) parallel to the imaginary
axis in the wu+iv plane.

In addition, the modulus of the elliptic functions in the two
branches are related to each other.

In fact, if A<1, k» =p>=A(A+1), thus k and p' are

complementary to each there; if 1 >1- 1> =1/ 4> p'= 1/+/I* +1>
[ and p' are related to each other also.
Therefore, the memory function of a perfect diatomic chain is as

follows:

M(6LLA < 1) = 24 (6LL A < 1) + b7 (L1, A < 1], (5.35a)
M(6LLA > 1) = 245 (6LL A > 1)+ b2 (1L, A > D). (5.35b)
k=1

This is a diatomic chain composed of oscillators of masses m,,
m, and a mass impurity m, All oscillators interact with their
nearest neighbors through Hooke constant K. The recurrants are
given by o(n1,A)=nlLAALLAA.),A(ML,A) =2, and
o, (L) =01L4,4,LL4,4,...), the same as o,(1,1,1), hence
b (t;n,1,A)=b,(t:1,1,4).

Therefore, the memory functions of this chain are given by
Mt A <1) = 25bf (.1 A <D+ b7 (670, A< D], (5.36a)
M@ L,A>1)= 277[ Ot 1A > D)+ b (1,1, 4 > 1)] (5.36b)

where  pronplLa<l),  b(LplA<l), and o pepl a1y,
b™(t;n,,A >1) are given by (5.20), (5.29) and (5.25), (5.34),
respectively.

Discussion

In the proceeding sections, we have examined memory functions
of different chains. We find that a perfect monatomic chain (1,1, 1)
and a monatomic chain with a mass impurity (17,1,4) have the same
o (11 =o,(,L) =(LLL..), thus b,(£1,1,1) =b,(;1m,1,1) given by
(5.6). However, the two chains have different A |, hence they have
different memory functions given by (5.8) and (5.9), respectively.

Similarly, a perfect diatomic chain (1,1,4) and a diatomic chain
with a mass impurity (n,1,1) share the same recurrants in S;:
o,(LLA) =0,(7.1,2) = (LLA,ALL4,4,..), thus they have same b, (¢).
Because of their different A (1,1,4) =24 andA,(5,1,4) =27, they
have different memory functions given by (5.35a, b) and (5.36a,
b), respectively.

On the other hand, we notice that only if a monatomic or a
diatomic chain has a full impurity, has its b, (¢) both pole and cut
contributions, otherwise, the chain has cut contribution only, i.e.

b (t;m,1,2)
b (131,10, 2) + b (t;17,K, A)

k=1
if

bi(t;m,K,2) = { (5.37)

K #1
Conclusions

In this paper, the memory function of a full impurity in a diatomic
chain is derived by means of the recurrence relations method. The
memory function is contributed by poles and cuts. The former
result in a cosine and the latter in acoustic and optic branches. Both
branches are given by a convolution of a difference of two sines
and an expansion of even-order Bessel functions. The expansion
coefficients are integrals of elliptic function sn(u) along the real
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axis in a complex plain for the acoustic branch, and integrals of
elliptic function nd(v) along a contour parallel to the imaginary
axis in that plane for the optical branch, respectively.

Different special cases are examined and corresponding memory
functions are derived. It turns out that a perfect monatomic chain and a
monatomic chain with a mass impurity share the same b, (¢), but their
memory functions are different because of their different A, . Same
are true for diatomic chains. Besides, the memory function has pole
contribution only if the chain has a fi/// impurity, i.e. k¥ # 1.
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Appendix A

Now we derive general expressions (3.15a, b) based on calculation of the residues of function

1 (k-2 4 pz (2R @) ) ) -
S 2k-1) (22 +m*)(z* +n?)

h(z)

(A.1)

at poles £ im , *in and on the signs of D, (x,4), D, (k,A) in different regions shown in Table 1.

Region Il ;: D, (x,A) >0 and D, (k,A) > 0. We have

1

Res h(im) =
O ) = S e D + )

[(zc—z)(—mz)—p1 +E (i) (=m? + a>)(=m® +b>)(=m’ +c2)}.
mm

Recall 3.12), [D, (2)+28(2)]._, = D, (5, 4) + im(%i)y/(m* — a®)(m* —=b*)(m* —*) =0,

z=im
Since D, (x,A) > 0, we have to choose S(im) = i~/--- . Thus

imt

e
> .

Res h(im) = 2(,(_1)(1,%2 _n2)|:(K—2)m2 - p, —%\/(m2 —a>)(m* —b*)(m” —cz)}

Similarly, residues of 4(z) at —im , £ in are obtained by choosing S(—im) = —i«---, S(in) =i+/--+ and

S(—in) = —i+/-+- . Summing up the residues gives:

1 2 K 2 N2 72y 2 2 a
R T (G L o —at)m? b’ )], (A22)
1 B K P 2 2 2
= 2D _nz)[(2—/<)n‘ + D, +;\/(n‘ —a’)(n® -b*)(n* —c?)]. (A.2b)
Set
L wmmiop ka0 )
b 2k-D(m*-n*) 2k =1)(m* —n*)m ’
B Q2-x)n’ + p, : K\/(n2 —a*)(n® =b*)(n* —c?)
L2k =D(m>-n*)" 2(k =1)(m* —=n*)n '
Or by (2.13),

_mmiop RO —at ) - bt m’ — )

‘ T 4(x —1)Am

; A3
4k~ DA (A-3)

_Qeontep 0 —ah)w -0~ )

' 4k-DA T 4(x —1)An

(A.3b)

It is able to show, especially easy to verify numerically that
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M, =M,, N =N,. (A4)
Thus in Region /], the amplitudes are given by

M=M-M,=0, (A.50)

_ 2 2 _an? = b =t
N=N1+N2=(22K)n tp, s —a® )’ —bP)(n? = c?)
(x —D)A 2(k —1)An . (A.5b)

Similarly, by the same considerations we obtain the amplitiutes M/ and N in different regions.

Region /Il : D, (k,A) <0 and D, (x,4)<0.

_(k=2m*—p, _Ky(m’ —a’)m’ —b*)m’ — )

M=M= s 2(k —)Am (A6
N=N,-N,=0. (A.6b)
Region/l,: D, (x,A) >0 and D, (x,4) <0

M=M-M,=0, (A.72)
N=N,-N,=0. (A.7b)
Region /I ,: Dy(m) >0 and D,(n) > 0.

M=M-M,=0, (A.82)
N=N +N,. (A.8b)
Region 1,: D, (k,A) <0 and D, (k,1)<0.

M=M+M,, (A.92)
N=N,-N,=0. (A.9b)
Region 1,: D, (,4) <0 and D, (k,1) <0.

M=M+M,, (A.10a)
N=N,-N,=0. (A.10b)

Expressions (A.5) ~ (A.10) for M and N are indeed (3.15a, b).
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Appendix B
In this appendix, we derive (5.23a, c).

B.1 By (5.22a),

/2
UL, A>1) = L d9\/(1 — 1} sin@)(1-1; sin@) cos .
Setting [32]

(1-13)sin* @

)
sin“ a = ,
1-1;sin* @
we obtain
1—2)"2
cosada = a (lz ,2)20)3/2 cos ad o
—1; sin )
<2 1_[2
s1n29—%,cos0= —5—cosa ,
1-1;cos” @ 1-1;cos”
. 1-1*sin’ & =12 1
1-1}sin*0=(1-1}) — ==,
1-15cos” a -4, A
. 1-1;
1_122511'120:2—22.
1-15cos” a

With (B.3)-(B.6) we have

4o o da 1
JA=22sin? 0)(1-2sin*0)  J1-12 1-Psin’a |1-12

B.2 Write (B.1) as

de
sin” @)(1—1; sin” )

/2
U (L1L,A>1) =j0 N
st

Substitution of (B.3)-(B.6) gives

cn(u,l)dn’ (u,l,)
[1-Len®(u,[,)F"?

Us(LLA>D=( _Zzz)zjoK(l)du

Similarly, make use of (5.5a),

do
— 1} sin® @)(1-1} sin> )

v anasn=["
n oty - o \/(1

Combining it with (B.3)-(B.6) leads to

du .

(1-1} sin® @)(1—1; sin” @) cos O .

(1~ sin’ 6)1 £} sin’ mcow{l +3¢, (n)sin® 0} |
j=1

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

B.7)

(B.8)
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U (LLA> 1) =US WLA> D)+ e, (mU,; (LLA>1), (B.9)

Jj=1

_ aco 2 2j
U, ILLA>)=(01- lf)ZJ.OKU)du cn([Lll’l);zin ELE’Z)I;TA;?J) .
—i,cno\u,

(B.10)

(B.8)- (B.10) give (5.23a, b, ¢).

Appendix C

In this appendix, we derive the expressions for the auxiliary integrals in optical branch.

In (5.26), introduce sn(u) =sina =rsind (sina, =1, sina, =r > 1), then

VL, <1) = J.a" *sin’ a)cos’ a »

da
———(-p
J1l=psin”a
Which may be written as
Ve, A < 1) :pj““ du cn’(u, p)dn®u,p)  (p* =1/r* = /(A +1)<1). (C.1)

By use of (5.5a, b),

n ~ opt
VO ALA<) =V LA<D+Y e,V LLA<]) (1=123,.), (C.2b)
=

opt

I}j (LL,A<1)=p>" J-u“ du cn’ (u, p)dn® (u, p)sn*’ (u, p). (C.2¢)

At endpoints of the optical branch,

snu, =sina, =1/NA>1,u, =sn'(1/r2), (C.3a)

snu, =sina, =r=(A+1)/A>1,u, =sn"' (J(A+1)/A).(C.3b)

Henceu,,u, are complex, and sn(u, p) = sn(u +iv, p), cn(u +iv, p), dn(u +iv, p) are complex elliptic

functions. The integrals (C.1a, c) are carried out in a complex u + iV plane. So

(C.3b) and (C.1 a, c) take the form

sn(u, +iv,, p) =sin(a, +if3,)=r>1, (C.4a)
(g7,

VoL, A< 1) = pj( )) (du + idv) cn’ (u +iv, p)dn®(u +iv, p), (C.4b)

~ opt . (ug,v,) .

V, (LLA<])= pZ“IJ.( : (du +idv) cn’® (u + iv.p)dn® (u + iv, p)sn™ (u +iv, p). (C.4c)
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where p'=+/1— p*> <1 is the complementary modulus of p , and
v, =sn (N1-24*,p"). (C.5)

By addition theorem [32], the complex elliptic functions may be replaced by real elliptic functions. With arguments

similar to [18, especially in Appendix A], we obtain

Ve LA <) =-ip(p)* [ dv ed® (v, p)sd* (v, p). (C.60)
- . 24l 4 [KP) 2 2 2j
Vi (LA<D)==ip (P [ dv ed® (v, psd (v, pynd ™ (v, p"), (C.6b)

i.e. (5.27a, c). The contour # = K(p) is parallel to the imaginary axis in the # + iV plane.

By the same arguments, we have the auxiliary integrals for 4 > 1 as

V(LA > 1) = —zp(p')“J‘OK(p') dv cd*(v.p)sd>(v.p"), (C.7a)
n _ opt
VP QLASD) =V LLAS D+ Y c,(m)p™ V; (LLA>1), (C.7b)
j=1
- . 24l 4 [KP) 2 2 2
Vi (LLA>1)=—=ip”"(p") J.o dved (v, p)sd (v, pynd™ (v, p'), (C.7¢)
i.e. (5.33a,b)
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