

Neoplastic Sequelae of a Retained Ureteric Stent? The First Case of a Retained Stent Subsequently Presenting with Upper Tract Urothelial Carcinoma

Divar Vijendran, BMed^{1*}, Jodie McDonald, MD¹, Bishoy Hanna, MD¹, Amanda Chung, PhD¹, Ahmed Goolam, MBBS¹, Warwick Delprado, MBBS² and Matthew Winter, MBBS²

¹Department of Urology, Royal North Shore Hospital, Sydney, Australia.

²Department of Pathology, St Vincents Clinic, Sydney, Australia.

*Correspondence:

Divar Vijendran, BMed, Department of Urology, Royal North Shore Hospital, Sydney, Australia.

Received: 15 Dec 2025; Accepted: 19 Jan 2026; Published: 05 Feb 2026

Citation: Divar Vijendran, BMed, Jodie McDonald, Bishoy Hanna, et al. Neoplastic Sequelae of a Retained Ureteric Stent? The First Case of a Retained Stent Subsequently Presenting with Upper Tract Urothelial Carcinoma. American J Pathol Res. 2026; 5(1): 1-3.

ABSTRACT

We present the first case of a patient with a retained ureteric stent subsequently presenting with upper tract urothelial carcinoma (UTUC). A 43-year-old male, who was lost to follow-up after stent insertion for ureteric stones in 2016, presented with haematuria and weight loss. Imaging revealed a renal mass, retroperitoneal lymphadenopathy and a retained ureteric stent. Radical nephroureterectomy and retroperitoneal lymph node dissection confirmed UTUC with squamous differentiation. This case demonstrates a potential relationship between long-term mechanical irritation in the upper urinary tract and UTUC, but given the absence of prior reports, highlights the need for further investigation into chronic irritation as a risk factor for UTUC.

Keywords

Upper tract urothelial carcinoma, UTUC, Retained ureteric stent, Forgotten ureteral stent, Chronic ureteric irritation.

Body

Upper and lower tract urothelium are embryonically distinct [1] and upper UTUC and bladder urothelial carcinoma (BUC) have clinical, pathological and epidemiological differences [2]. UTUC is far less common and accounts for only 5-10% of all urothelial carcinomas [3], and our understanding of its risk factors is less established.

It is well described that tobacco smoking and aromatic amine exposure are risk factors in the development of both BUC and UTUC [4]. Chronic inflammation secondary to recurrent urinary tract infection, *Schistosoma haematobium* infection or mechanical irritation has strongly associated with BUC and bladder squamous cell carcinoma [1,5]. In the upper tract population chronic irritation is commonly referred to as a risk factor [6], however the evidence is contradictory. For example, UTUC and stone disease

are associated in large population studies [7], but the causal mechanism is debated given shared risk factors between both conditions [8]. Conversely, large retrospective reviews of cohorts of patients who are lost to follow up with retained ureteric stents have not previously described urothelial malignant transformation, and reviews of over 50,000 ureteric stents (15,000 of which were long term) have never observed malignancy as a potential risk [9,10].

A 43-year-old man presented with weight loss, night sweats and haematuria. He was a non-smoker without significant past medical history or history of familial cancers. Nine years prior, he had a left ureteric stent inserted for the management of acute renal colic, after which he was lost to follow-up. Computed tomography (CT) imaging revealed a left lower pole exophytic mass in the renal parenchyma, a large left retroperitoneal mass abutting the aorta and invading psoas, and a retained left ureteric stent with heavy proximal and distal encrustation. A biopsy of the retroperitoneal mass showed likely squamous cell carcinoma and FDG-PET demonstrated intense avidity in both the renal and retroperitoneal

mass suggesting a primary renal squamous cell carcinoma with malignant lymphadenopathy. Following a multidisciplinary review, it was decided to proceed with radical surgery.

Via a midline laparotomy, the left renal unit was exposed and a radical left nephroureterectomy was performed. A limited left retroperitoneal node dissection was then performed to remove the retroperitoneal mass. The patient was admitted to ICU for routine monitoring; he had an uncomplicated post-operative stay and discharged home day seven post operatively. Post-operative histopathology revealed focal mucous secretion and strong staining for CK7, and favoured high grade urothelial carcinoma with extensive squamous differentiation in both the renal and retroperitoneal specimen.

Figure 1: Computed tomography imaging of a retained stent.

The link between chronic mechanical irritation and development of UTUC has been debated in the literature, with conflicting factors on both sides. Large population data out of the Netherlands examining over 120,000 people demonstrates an increased risk of UTUC in people with kidney stones with a hazard ratio of 1.66, (95% CI 1.03-2.68). It is debated whether the stone itself versus the greater biological environment that predispose an individual to forming stones are key in malignant transformation [8]. Risk factors such as smoking, alcohol, diet, and gender are shared between both pathologies. Chronic kidney disease has also been strongly associated with both stones and UTUC formation [11,12].

Large retrospective reviews of up to 50,000 patients with ureteric stents, including subgroups of patients with long term stents ($n= >15,000$) have never observed malignant transformation as a risk [9,10]. A meta-analysis of over 1200 patients specifically with non-intentionally retained ureteric stents did not demonstrate a single case of malignant transformation, and over 250 patients in this meta-analysis had stents left in situ for greater than 10 years [13-15]. Reviews of simple nephrectomy specimens for management of stone disease or xanthogranulomatous pyelonephritis rarely describe incidental UTUC [16,17], although this is occasionally reported in international data [18,19] and may be of a higher incidence in countries with less timely access to stone management [20].

Squamous differentiation is the most common histological variant in UTUC, quoted at about 15% and considered as an adverse prognostic factor [21]. It is thought to be related to advanced tumour stage and a high rate of lymphovascular invasion [22]. The relationship between upper tract pure SCC and UTUC with squamous differentiation is poorly understood given the rarity of the disease. In bladder cancer, pure squamous cell carcinoma compared to urothelial carcinoma with squamous differentiation is differentiated with careful immunohistochemistry [23]. Interestingly in our case, non-keratinizing squamous metaplasia was noted in the renal pelvis and ureter, and squamous metaplasia has long been interlinked in the carcinogenesis in the bladder urothelial carcinoma population [24].

We describe a case in which long term mechanical irritation of the upper collecting system precedes the development of UTUC with extensive squamous differentiation. This is the first documented case of malignancy following a retained ureteric stent and asks the question of a potential relationship or just a rare entity. There is a paucity of data and research into the mechanism and relationship between long term inflammation of the upper tract urothelium and development of UTUC.

References

1. Liang FX, Bosland MC, Huang H, et al. Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. *J Cell Biol.* 2005; 171: 835-844.
2. Lefort F, Rhanine Y, Larroquette M, et al. Clinical and Biological Differences between Upper Tract Carcinoma and Bladder Urothelial Cancer, Including Implications for Clinical Practice. *Cancers (Basel).* 2023; 15: 5558.
3. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. *CA Cancer J Clin.* 2022; 72: 7-33.
4. McLaughlin JK, Silverman DT, Hsing AW, et al. Cigarette smoking and cancers of the renal pelvis and ureter. *Cancer Res.* 1992; 52: 254-257.
5. Sui X, Lei L, Chen L, et al. Inflammatory microenvironment in the initiation and progression of bladder cancer. *Oncotarget.* 2017; 8: 93279-93294.
6. Zganjar AJ, Thiel DD, Lyon TD. Diagnosis, workup, and risk stratification of upper tract urothelial carcinoma. *Transl Androl Urol.* 2023; 12: 1456-1468.
7. van de Pol JAA, van den Brandt PA, Schouten LJ. Kidney stones and the risk of renal cell carcinoma and upper tract urothelial carcinoma: the Netherlands Cohort Study. *Br J Cancer.* 2019; 120: 368-374.
8. Mihalopoulos M, Yaghoubian A, Razdan S, et al. Understanding the link between kidney stones and cancers of the upper urinary tract and bladder. *Am J Clin Exp Urol.* 2022; 10: 277-298.
9. Agrawal M, Gite VA, Sankpal P, et al. Retained ureteral stents, an avoidable source of morbidity: 10 years' experience from a single tertiary care centre. *Pan Afr Med J.* 2022; 42: 68.

10. Geavlete P, Georgescu D, Mulțescu R, et al. Ureteral stent complications - experience on 50,000 procedures. *J Med Life.* 2021; 14: 769-775.
11. Xiong G, Chen X, Li X, et al. Prevalence and factors associated with baseline chronic kidney disease in China: a 10-year study of 785 upper urinary tract urothelial carcinoma patients. *J Formos Med Assoc.* 2014; 113: 521-526.
12. Chen J-S, Lu C-L, Huang L-C, et al. Chronic Kidney Disease is Associated With Upper Tract Urothelial Carcinoma: A Nationwide Population-Based Cohort Study in Taiwan. *Medicine (Baltimore).* 2016; 95: e3255.
13. Gosein SS, Forster JA, Bolton JF. Nineteen-year forgotten ureteral stent removed under local anaesthetic from a transplanted kidney. *Ann R Coll Surg Engl.* 2024; 107: 528-530.
14. Fuselier A, Lovin JM, Kelly EF, et al. A 22-Year-Old Retained Ureteral Stent: One of the Oldest Removed Using a Multimodal Endourologic Approach. *J Endourol Case Rep.* 2020; 6: 180-183.
15. Wang X, Ji Z, Yang P, et al. Forgotten ureteral stents: a systematic review of literature. *BMC Urol.* 2024; 24: 52.
16. Danilovic A, Ferreira TAC, Maia GVA, et al. Predictors of surgical complications of nephrectomy for urolithiasis. *Int Braz J Urol.* 2019; 45: 100-107.
17. Gravestock P, Moore L, Harding C, et al. Xanthogranulomatous pyelonephritis: a review and meta-analysis with a focus on management. *Int Urol Nephrol.* 2022; 54: 2445-2456.
18. Guglin A, Weiss R, Singh A, et al. Concurrent Xanthogranulomatous Pyelonephritis and Upper Urinary Tract Transitional Cell Carcinoma. *Case Rep Urol.* 2023; 2023.
19. Shah HN, Jain P, Chibber PJ. Laparoscopic nephrectomy for giant staghorn calculus with non-functioning kidneys: Is associated unsuspected urothelial carcinoma responsible for conversion? Report of 2 cases. *BMC Urol.* 2006; 6: 1.
20. Yeh CC, Lin TH, Wu HC, et al. A high association of upper urinary tract transitional cell carcinoma with nonfunctioning kidney caused by stone disease in Taiwan. *Urol Int.* 2007; 79: 19-23.
21. Makise N, Morikawa T, Kawai T, et al. Squamous differentiation and prognosis in upper urinary tract urothelial carcinoma. *Int J Clin Exp Pathol.* 2015; 8: 7203-7209.
22. Minato A, Noguchi H, Kimuro R, et al. Clinical significance of squamous differentiation in upper tract urothelial carcinoma treated with radical nephroureterectomy. *J Clin Oncol.* 2023; 41: 451.
23. Gulmann C, Paner GP, Parakh RS, et al. Immunohistochemical profile to distinguish urothelial from squamous differentiation in carcinomas of urothelial tract. *Hum Pathol.* 2013; 44: 164-172.
24. Baithun S, Daruwala P, Oliver RT. Squamous change in bladder cancer and its relevance to understanding clonal evolution in development of bladder cancer. *Cancer Surv.* 1998; 31: 17-27.