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ABSTRACT

Rib fractures account for 39% to 50% of chest trauma cases, with X-ray imaging being the primary diagnostic
tool in clinical practice. However, diagnosing rib fractures remains challenging due to multiple factors, including
poor patient positioning caused by pain, overlapping rib structures that obscure fractures, and suboptimal X-ray
exposure settings that reduce contrast or introduce noise. Studies indicate that X-ray sensitivity for detecting rib
fractures ranges from only 12% to 40.7%, with up to 50% of fractures remaining undetected, whereas computed
tomography (CT) achieves a detection rate of 39% to 66%. Although CT improves fracture detection, its high cost
and radiation exposure limit its routine use in clinical settings. This study collected X-ray images from patients
with CT-confirmed rib fractures and trained four convolutional neural networks (CNNs): AlexNet, VGGI16,
GoogLeNet, and MobileNetV2 to enhance Al-based fracture detection. The optimized CNN models effectively
identified suspected rib fractures, achieving a classification accuracy of 0.77 to 0.98. We further applied the
YOLOv4 object detection model to precisely locate fractures on X-ray images, with detailed loss function analysis
using CloU for bounding box regression. For comparative purposes, we discuss RetinaNet's Focal Loss (FL = (1-
p)"y CE, with y=2) as an alternative to YOLOv4's BCE, potentially addressing class imbalance more effectively.
Additionally, EfficientDet was explored as a scalable detector to complement YOLOV4, offering multi-scale feature
fusion via BiFPN. The final results showed that among 11 X-ray images, the AI model successfully identified the
exact fracture locations in 7 cases, demonstrating its reliability and clinical potential. This study integrates deep
learning and image recognition techniques, proposing an Al-based solution that balances diagnostic accuracy
and clinical feasibility. By leveraging CNNs to enhance X-ray interpretation and YOLOv4 for precise fracture
localization, with comparisons to RetinaNet and EfficientDet, this method reduces the burden on physicians,
improves diagnostic efficiency, and optimizes medical resource allocation. The findings confirm that this AI model
can effectively assist in the initial assessment of rib fractures, providing clinicians with more accurate decision-
making support and advancing Al-assisted diagnostic tools in healthcare.
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Rib fracture, Chest X-ray interpretation, Deep
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Introduction

Rib fractures are among the most common injuries in blunt chest
trauma, accounting for approximately 39% to 50% of all cases
[1,2]. Clinically, X-ray imaging is widely used as the primary

screening tool due to its accessibility and low cost. However, its
diagnostic accuracy can be affected by several factors, including
poor patient positioning due to pain, improper exposure settings,
overlapping rib structures, low contrast resolution, and interference
from concomitant chest injuries such as pulmonary contusions or
chest wall hematomas [3]. Studies indicate that the sensitivity of
X-ray for detecting rib fractures ranges from only 12% to 40.7%,
with up to 50% of fractures going undetected [4-7]. Additionally,

Recent Adv Clin Trials, 2025

Volume 5 | Issue 4 | 1 of 9



interpretation can vary among physicians due to differences in
experience, leading to inter-observer variability and increasing
diagnostic uncertainty. In contrast, computed tomography (CT)
provides higher resolution, clearly visualizing subtle fractures
and surrounding soft tissue injuries, with a detection rate of
approximately 39% to 66% [8,9]. However, the high cost and
potential radiation exposure associated with CT limit its routine
use in initial screenings [10]. Therefore, the development of
artificial intelligence (Al)-assisted diagnostic tools to improve rib
fracture detection on X-ray images and reduce missed diagnoses
has become an urgent clinical need.

In recent years, Al technology has been widely applied in
musculoskeletal imaging, including the automatic detection of
long bone fractures, pelvic and spinal fractures, as well as the early
diagnosis of osteoporosis and metastatic bone lesions [11,12].
However, detecting rib fractures using Al remains challenging due
to the overlapping rib structures and low contrast in X-ray images,
which make fracture identification more difficult. Compared to
other skeletal injuries, rib fractures have less distinct imaging
features, and their fracture lines are often unclear, making it
harder for Al models to learn and interpret them accurately [13].
Current Al models still show inconsistent performance in rib
fracture detection, particularly in identifying cortical irregularities
and small fractures. Further optimization of Al algorithms, with
improved feature extraction and integration of object detection
techniques, could enhance the accuracy of rib fracture detection on
X-rays, reduce inter-observer variability, and increase diagnostic
confidence in clinical practice [14].

This study focuses on developing an Al-assisted diagnostic system
to enhance rib fracture detection on X-ray images while reducing
diagnostic uncertainty and inter-observer variability. To achieve
this, we implemented four convolutional neural network (CNN)
models—AlexNet, VGG16, GoogleNet, and MobileNetV2—
leveraging transfer learning to train Al models to distinguish
between normal and rib fracture images. These deep learning models
automatically extract image features and recognize fracture-specific
visual patterns, improving classification accuracy. Building on this
foundation, we integrated the YOLOvV4 object detection model to
annotate and localize fracture regions. This enables the Al system
not only to identify the presence of rib fractures but also to precisely
delineate the affected areas, facilitating faster and more accurate
diagnosis. YOLOV4 offers real-time detection capabilities within
a single neural network framework, simultaneously performing
classification and localization, making it more suitable for clinical
applications than traditional algorithms. For comparative analysis,
we explore RetinaNet's Focal Loss as an alternative classification
loss and EfficientDet as a complementary detector.

By combining CNN-based classification with YOLOv4 object
detection, and contrasting with RetinaNet and EfficientDet,
this approach establishes a highly efficient, low-cost, and low-
radiation-risk Al-assisted diagnostic tool to address the limitations
of X-ray imaging in rib fracture detection. Compared to computed
tomography (CT), this method significantly enhances fracture

detection and localization accuracy without additional radiation
exposure while also reducing diagnostic variability and the risk
of missed fractures. With this Al-driven technology, clinicians
will be able to interpret X-ray images more accurately, refine
diagnostic decision-making, and provide safer and more effective
patient care.

Methods

Subjects

Our retrospective study was approved by our institutional review
board and informed consent was waived. This study adopted
a retrospective design and extracted relevant images from the
National Institutes of Health (NIH) Chest X-ray Dataset. A total of
186 X-ray images without rib fractures were selected and labeled
as "Normal," while 87 X-ray images from patients with CT-
confirmed rib fractures were labeled as "Rib fracture." To balance
the dataset, image augmentation techniques, such as horizontal
flipping, were applied to the rib fracture images, increasing their
count to 186. This resulted in a total dataset of 372 images (186
Normal, 186 Rib fracture).

The dataset was then divided into three subsets: a training set
(Train: 122 Normal, 122 Rib fracture), a validation set (Validation:
33 Normal, 33 Rib fracture), and a test set (Test: 31 Normal, 31
Rib fracture). During preprocessing, all images were resized to
match the input requirements of the transfer learning models. The
overall dataset composition and preprocessing steps are illustrated
in Figure 1.

The study dataset was obtained from the NIH Chest X-ray Database
and included 186 X-ray images without rib fractures (labeled
as "Normal") and 87 X-ray images with rib fractures confirmed
by CT (labeled as "Rib fracture"). To balance the dataset, image
augmentation techniques, such as horizontal flipping, were applied
to the rib fracture images, increasing their count to 186. This
resulted in a total of 372 images (186 Normal, 186 Rib fracture).
The dataset was then divided into training (122 Normal, 122 Rib
fracture), validation (33 Normal, 33 Rib fracture), and test sets (31
Normal, 31 Rib fracture). During preprocessing, all images were
resized to match the input requirements of the transfer learning
models, ensuring stable and accurate model training.

Model Architecture and Training

In the first stage, four convolutional neural networks (CNNs)—
AlexNet, VGG16, GoogLeNet, and MobileNetV2 were used for
transfer learning to classify normal and rib fracture X-ray images.

The structure of CNNs consists of three main components:
convolutional layers, pooling layers, and fully connected layers.
The convolutional layer applies convolution operations to extract
local features from input images, converting them into numerical
feature maps that help identify key patterns such as edges, textures,
and shapes. The pooling layer then reduces the dimensionality of
the feature maps using either max pooling or average pooling,
which decreases the number of parameters and computational
complexity while retaining essential features, improving model
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Figure 1: Sample dataset division.

efficiency. Finally, the fully connected layer integrates the
extracted features, performs weight calculations, and classifies the
input as either normal or rib fracture, generating the final model
output.

AlexNet Transfer Learning

This program adopts AlexNet as the CNN architecture, originally
proposed by Alex Krizhevsky in 2012 [15]. The model consists
of eight layers, with the first five serving as convolutional layers,
responsible for extracting local features such as edges, textures,
and shapes through convolution operations. These layers are
paired with pooling layers, which perform dimensionality
reduction to decrease computational complexity and enhance
feature representation. The final three layers are fully connected
layers, which integrate the extracted features and apply weight
calculations to classify the input images as either normal (Normal)
or rib fracture (Rib Fracture).

Convolutional Operation: y =
convolution).
ReLU Activation Function: f(x) = max(0, x).

x * w + b (where * denotes

To improve model performance and prevent overfitting, this
program employs ReLU (Rectified Linear Unit) as the activation
function, ensuring effective gradient propagation and mitigating
the vanishing gradient problem associated with traditional
functions. Additionally, Dropout is applied during training to
randomly deactivate certain neurons, reducing dependence on
specific features and enhancing generalization. To further increase
adaptability, data augmentation techniques such as image flipping,
rotation, translation, and contrast adjustment are implemented
to expand the dataset and improve model robustness. For
computational efficiency, the training process utilizes two GPUs
for parallel computing, accelerating weight updates and reducing
model convergence time, allowing the network to reach optimal
performance more quickly. Our implementation was trained on
122 normal and 122 rib fracture X-ray images, validated with 33
images per class, and tested on 31 images per class, achieving a
classification accuracy of 97%.

VGG16 Transfer Learning

VGGNet was developed by the Visual Geometry Group (VGG) at
the University of Oxford in collaboration with Google DeepMind
in 2014 and is recognized as one of the representative CNN
architectures in deep learning research [16].

In this study, the model consists of 16 layers, including 13
convolutional layers with 3x3 kernels and 3 fully connected layers.
By stacking small convolutional filters, the network enhances
feature extraction capabilities while maintaining a relatively low
number of parameters, thereby improving computational efficiency
and generalization ability. The model processes 224x224 three-
channel RGB images as input and employs a progressively deeper
convolutional structure to capture fine-grained image features,
demonstrating stable performance and adaptability in large-scale
image classification and feature extraction tasks. Trained on our
dataset, VGG16 achieved a test accuracy of 80%, demonstrating
its effectiveness in rib fracture detection.

Convolutional Operation (3%3 kernels): y =x * w + b.
ReLU Activation Function: f(x) = max(0, x).

GoogLeNet Transfer Learning

GoogleNet is a deep CNN architecture trained on over one
million images, consisting of 144 layers and capable of classifying
1,000 object categories. The model introduces a modular design
(Modularization) by replacing traditional convolutional layers
with Inception modules, enhancing computational efficiency and
improving feature extraction.

In deep learning, increasing the number of network layers can
theoretically improve model accuracy. However, as the depth
increases, computational cost and the number of parameters
also rise, which may lead to gradient vanishing and overfitting,
negatively affecting model convergence and generalization.
To address these issues, GoogLeNet incorporates an Inception
structure, where convolutional layers and pooling layers are
stacked in parallel [17]. It integrates multiple convolutional kernels
of different sizes along with max pooling, using concatenation
operations to merge outputs into a single Inception module. The
overall GoogLeNet architecture is composed of multiple Inception
modules. Our experiments demonstrated a classification accuracy
of 87% on the test dataset, reinforcing the model’s capability in
medical image interpretation.

Inception Module: Output = Concat(Conv1x1, Conv3x3(reduced),
Conv5x5(reduced), MaxPool3x3 + 1x1).

MobilenetV2 Transfer Learning

In the field of deep learning, Google introduced the MobileNetV1
architecture in 2017, incorporating depthwise separable convolution
to optimize computational efficiency. This approach breaks down
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traditional convolution operations into two separate steps: depthwise
convolution, which applies a single filter per input channel, and
pointwise convolution, which uses 1x1 convolutions to combine
the output from the depthwise step. By adopting this method,
MobileNetV1 significantly reduces computational complexity
and the number of parameters while maintaining output accuracy,
making it well-suited for resource-constrained devices.

In 2018, Google introduced MobileNetV2, which further improved
the architecture by retaining the benefits of depthwise separable
convolutions while introducing inverted residuals and linear
bottlenecks. These enhancements further reduced model size
and computational cost while improving classification accuracy,
allowing the model to remain lightweight without compromising
feature extraction capability. Due to these innovations, the
MobileNet series has become an efficient and practical deep
learning solution, particularly for mobile devices and embedded
systems where computational resources are limited [18,19].

MobileNetV2 is designed for computational efficiency, utilizing
depthwise separable convolutions and inverted residual blocks to
reduce model complexity without compromising accuracy. This
structure is particularly advantageous for real-time diagnostics and
mobile healthcare applications.

Depthwise Separable Convolution: Depthwise (one filter per channel):
¥ =x * d; Pointwise (1x1 combines channels): y=§ * w + b.

With a test accuracy of 77%, MobileNetV2 demonstrated a balance
between computational efficiency and classification performance.

Table 1: Rib fracture prediction accuracy in transfer learning models.

Lt Ll Training accuracy VL B Test accuracy
Model accuracy

AlexNet 1.00 1.00 0.98

VGG16 0.93 0.91 0.81
GoogLeNet 0.97 0.89 0.87
MobilenetV2 0.74 0.78 0.77
YOLOv4

Unlike conventional classification-based models, YOLOvV4 is an
advanced object detection framework capable of localizing rib
fractures by predicting bounding boxes directly within a single
forward pass. This capability significantly enhances its suitability
for real-time radiographic analysis [20]. The model was trained
on 70 manually annotated rib fracture images and tested on an
additional 11 images. While 7 out of 11 cases were correctly
detected, 4 cases were missed, indicating that additional data
augmentation and model refinement are necessary for optimal
performance. For object detection, we utilized the YOLOv4
framework with anchor box sizes initially set to the default nine
anchors (spanning small, medium, and large scales) or refined
via k-means clustering on the ground-truth bounding boxes to
better fit rib fracture dimensions. During training and evaluation,
an intersection-over-union (IoU) threshold of 0.5 was used to
determine true positive detections (a standard criterion in detection
tasks). YOLOv4’s loss function incorporated the Complete

IoU (ClIoU) loss for bounding box regression, which improves
localization accuracy and convergence speed: CIOU = IoU - p?/c?
- av (where v measures aspect ratio, a is a trade-off). At inference,
a confidence probability threshold of 0.25 was applied to filter out
low-confidence predictions, balancing sensitivity and precision in
the detection results [21-24].

Loss Function: Loss =\ _coord Y. 1*{obj} (1 - CloU) + > BCE.

Non-Maximum Suppression (NMS) was employed to refine the
predictions by eliminating redundant bounding boxes, using an
Intersection-over-Union (IoU) threshold typically set between 0.3
and 0.5.

Implementation Details:

Input resolutions: 608x608 or 416x416 pixels

Batch sizes: 8-16

Dynamic learning rate adjustments for optimized convergence

In contrast to YOLOv4's use of BCE for classification, RetinaNet
employs Focal Loss, FL = (1-p)*y CE (with y=2), which modulates
the loss to focus on hard examples—potentially reducing the
impact of background dominance in X-ray images and improving
detection from 7/11 to higher rates in future iterations [25].

Table 2: YOLOv4 identification accuracy on rib fracture regions.

Case Identification accuracy
Not detected
0.37

0.90

Not detected
0.90

0.99

0.28

Not detected
Not detected
0.41

11 0.30

NoRiN-NIEN o N NV N NS RUL R SR

—_
S

EfficientDet (Comparative Exploration)

For comparative analysis, we explored EfficientDet, a scalable
object detection model that builds on EfficientNet backbones
with a bidirectional feature pyramid network (BiFPN) for multi-
scale feature fusion [24]. EfficientDet's compound scaling method
uniformly adjusts depth, width, and resolution to optimize
performance, making it suitable for medical imaging with limited
datasets like our 70 annotated images. Its loss combines Focal
Loss for classification (FL = -a (1-p)*y log p) and Smooth L1 for
regression. While not fully implemented in this study, EfficientDet
could complement YOLOv4 by improving efficiency on varying
resolutions, potentially addressing subtle fracture lines better in
radiographic challenges.

Results

Training performance comparison of CNN models: AlexNet,
VGG16, GoogleNet, and MobileNetV2 in transfer learning
for rib fracture classification

In Figure 2A, the training performance of the AlexNet model is
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shown through its accuracy curve, tracking the changes in both
training and validation accuracy over time. The model learns
rapidly in the early stages, with accuracy increasing sharply and
stabilizing around 50 epochs. By the end of training, both training
and validation accuracy reach 1.00, indicating that the model has
fully learned the dataset features without signs of overfitting. The
test evaluation further confirms its effectiveness, achieving a test
accuracy of 0.98, demonstrating strong generalization to unseen
data. Figure 2B presents the loss curve, showing a steady decrease
in loss values as training progresses. Initially, the loss is high, but it
declines consistently and stabilizes after 50 epochs, approaching zero,
which suggests effective model convergence and learning efficiency.

The training performance of the AlexNet model using transfer
learning for rib fracture classification in X-ray images. (A) shows
the accuracy curve, depicting changes in accuracy for both the
training and validation datasets. As training progresses, the model
reaches a final training accuracy of 1.00 and a validation accuracy
of 1.00. These results indicate that the model learns effectively
without signs of overfitting. The test evaluation further confirms
its effectiveness, achieving a test accuracy of 0.98, demonstrating
strong generalization to unseen data. (B) presents the loss curve,
tracking changes in loss during training. By the end of training,
both training and validation loss values approach zero, indicating
effective model convergence and optimal learning performance.

In Figure 3A, the VGG16 model follows a more gradual learning
process. Accuracy steadily improves as training progresses, and
the values become stable around 35 epochs. By the end of training,

the model reaches a final training accuracy of 0.93 and a validation
accuracy of 0.91, indicating strong learning performance with
minimal overfitting. The test evaluation further supports the
model’s reliability, yielding a test accuracy of 0.8 1, which confirms
its ability to generalize well to new data. In Figure 3B, the loss
curve shows a smooth decline in both training and validation loss,
with loss values stabilizing at 0.37 by the end of training. This
suggests that the model converges effectively and maintains stable
learning behavior.

The training performance of the VGG16 model using transfer
learning for rib fracture classification in X-ray images. (A) shows
the accuracy curve, representing the progression of training and
validation accuracy over time. The model gradually improves
throughout training, ultimately achieving a training accuracy
of 0.93 and a validation accuracy of 0.91, suggesting effective
learning with minimal overfitting. The test evaluation further
supports the model’s reliability, with a test accuracy of 0.81,
indicating a strong ability to generalize to new data. (B) presents
the loss curve, showing the decline in both training and validation
loss as the model learns. By the end of training, the loss values
stabilize at 0.37, confirming effective convergence and consistent
learning behavior.

In Figure 4A, the GoogleNet model displays steady learning
progression, with accuracy improving gradually and stabilizing
earlier, around 20 epochs. By the end of training, the model
achieves a training accuracy of 0.97 and a validation accuracy
of 0.89, demonstrating effective feature learning with controlled
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Figure 2: AlexNet transfer learning training curve.
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Figure 4: GoogLeNet transfer learning training curve.

overfitting. The test evaluation further confirms its strong
generalization ability, reaching a test accuracy of 0.87. Figure 4B
presents the loss curve, which shows a rapid decline during early
training before stabilizing around 20 epochs. The final loss value
of 0.42 confirms the model’s learning stability and convergence.

The training performance of the GoogLeNet model using transfer
learning for rib fracture classification in X-ray images. (A) shows
the accuracy curve, depicting the progression of training and
validation accuracy over time. The model demonstrates steady
improvement throughout training, ultimately reaching a training
accuracy of 0.97 and a validation accuracy of 0.89, indicating
effective feature learning with controlled overfitting. The test
evaluation further supports the model’s reliability, achieving a test
accuracy of 0.87, suggesting strong generalization to unseen data.
(B) presents the loss curve, showing the reduction in both training
and validation loss as the model learns. By the end of training, the
loss values stabilize at 0.42, confirming effective convergence and
consistent learning performance.

Finally, Figure 5A illustrates the MobileNetV2 model, which
exhibits a steady and incremental improvement in accuracy. The
accuracy curve shows that learning stabilizes earlier than the other
models, around 12 epochs. By the end oftraining, the model reaches
a training accuracy of 0.74 and a validation accuracy of 0.78,
demonstrating efficient learning with balanced generalization. The
test evaluation further supports its classification ability, with a test
accuracy of 0.77, indicating reliable performance in identifying rib
fractures. In Figure 5B, the loss curve presents a gradual but steady
decrease, with loss values stabilizing around 12 epochs before
settling at 0.57. This suggests that the model achieves convergence
efficiently while maintaining stable learning performance.

The training performance of the MobileNetV2 model using
transfer learning for rib fracture classification in X-ray images. (A)
shows the accuracy curve, representing the progression of training
and validation accuracy over time. The model exhibits steady
learning throughout training, achieving a training accuracy of
0.74 and a validation accuracy of 0.78, indicating effective feature
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Figure 5: MobilenetV2 transfer learning training curve.

learning with a balanced generalization. The test evaluation further
supports the model’s performance, with a test accuracy of 0.77,
demonstrating a good ability to classify unseen data. (B) presents
the loss curve, showing the decline in both training and validation
loss as the model learns. By the end of training, the loss values
stabilize at 0.57, confirming effective convergence and stable
learning behavior.

Overall, the training performance of the four CNN models—
AlexNet, VGG16, GoogLeNet, and MobileNetV2—demonstrates
varying learning behaviors and convergence patterns in rib fracture
classification. AlexNet achieves perfect accuracy (1.00) for both
training and validation, indicating strong learning capacity but
requiring further evaluation to ensure real-world applicability.
VGGI16 exhibits a steady learning process, with training and
validation accuracy stabilizing at 0.93 and 0.91, respectively, and a
lower final loss, suggesting reliable feature extraction with minimal
overfitting. GoogleNet stabilizes earlier (around 20 epochs),
reaching a test accuracy of 0.87, demonstrating efficient learning
and strong generalization. MobileNetV2, designed for lightweight
performance, stabilizes the fastest (around 12 epochs) but achieves
slightly lower accuracy (test accuracy of 0.77), indicating a trade-
off between efficiency and classification power. The loss curves
further confirm the convergence of all models, with loss values
ranging from near 0 (AlexNet) to 0.57 (MobileNetV2).

Compared to previous similar studies @V, which primarily relied
on high-resolution CT scans for rib fracture classification, our
study focuses on X-ray imaging, making it more accessible, cost-
effective, and practical for routine clinical use. This distinction is
particularly relevant when evaluating the computational efficiency
and generalization ability of different CNN models. While CT-
based models may offer higher resolution, their clinical application
is often limited by cost, radiation exposure, and availability. In
contrast, our study demonstrates that X-ray-based deep learning
models can achieve high accuracy in rib fracture classification
while providing a feasible and scalable alternative for clinical
practice. These findings highlight the importance of selecting a
model that optimally balances diagnostic performance with real-
world applicability.

YOLOV4 in detecting and localizing rib fracture regions on
X-ray images

Figure 6 evaluates the performance of YOLOvV4 in detecting rib
fractures on X-ray images. The model was trained on 70 annotated
images, where expert radiologists labeled fracture regions to
enhance detection accuracy. It was then tested on 11 X-ray images
with confirmed rib fractures, correctly identifying fractures in 7
out of 11 cases, achieving a detection accuracy of 64%.

This study employed YOLOv4 for the automatic detection of rib
fracture regions. The model was trained on 70 X-ray images, where
expert radiologists manually annotated the fracture regions to
enhance its ability to recognize distinct fracture patterns. After the
training phase, the model was tested on 11 X-ray images confirmed
to contain rib fractures to evaluate its detection performance. The
results showed that YOLOv4 successfully identified fracture
regions in 7 out of 11 test images, achieving a detection accuracy of
approximately 64%. These findings highlight YOLOv4's potential
as an assistive diagnostic tool, providing a reliable approach for
automated rib fracture detection while reducing the burden on
clinicians and improving diagnostic efficiency.

Compared to the YOLOv3-based study [22], which achieved high
sensitivity but suffered from a high false-positive rate, YOLOv4
improves detection accuracy and reduces false alarms through
advanced bounding box refinement techniques. Additionally, while
the Detectron2 study directly used X-ray for model training and
inference [23], our study has a critical advantage in data reliability.
Instead of using randomly selected X-ray, our dataset consists
of X-ray taken from patients with CT-confirmed rib fractures,
ensuring that the ground truth for fracture presence and location
is more accurate. This approach minimizes misclassification errors
due to undetected fractures in X-ray imaging, a known limitation
of rib fracture detection.

By incorporating CT-confirmed cases, our study enhances the
reliability of the training dataset, leading to more precise rib
fracture localization and improved clinical applicability. Future
work should focus on expanding the dataset, further refining
detection accuracy, and integrating YOLOv4 into multi-stage
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Figure 6: YOLOv4-based rib fracture region detection in X-ray images.

deep learning frameworks to optimize its diagnostic reliability and
clinical adoption.

Conclusion

This study applied four CNNs: AlexNet, VGG16, GoogLeNet, and
MobileNetV?2 to classify rib fracture X-ray images. The dataset was
constructed by first identifying cases diagnosed with rib fractures
through computed tomography (CT) and then retrospectively
collecting their corresponding X-ray images. Using deep learning
techniques, the model aimed to distinguish differences between rib
fracture and normal X-ray images for classification. The transfer
learning inference results showed an accuracy of 0.98 for AlexNet,
0.81 for VGG16, 0.87 for GoogLeNet, and 0.77 for MobileNetV2.
Additionally, the YOLOV4 object detection model achieved an
accuracy of approximately 64% in identifying rib fracture regions.

This study demonstrates the potential of CNNs in image
classification and object detection for rib fractures. However, for
real-world clinical applications, a larger dataset is necessary to

improve the stability and practical usability of the model. Although
the model successfully identified some fracture regions with limited
training data, its feature extraction capability remains constrained
by the structure of different neural networks. Therefore, expanding
the dataset and enhancing computational power will be key to
further improving the model’s accuracy and clinical applicability
in medical imaging.

Discussion

This study's approach is unique in focusing on rib fracture detection
in chest X-ray images—a more challenging but widely accessible
modality—rather than relying on higher-resolution CT scans as
in many prior works [21-23]. Moreover, it is among the first to
apply the YOLOvV4 detector for this task, whereas most previous
studies have utilized earlier YOLO versions (e.g., YOLOV3) or
its lightweight variant YOLOv3-tiny, underscoring the novelty of
our methodology. How does Focal Loss in RetinaNet potentially
outperform YOLOv4's BCE in imbalanced X-ray data, by down-
weighting easy negatives and focusing on hard fracture examples?
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What advantages might EfficientDet's BiFPN offer over YOLOv4
for multi-scale fractures, such as improved fusion of features
from varying rib sizes? To further enhance result transparency
and interpretability, we recommend including confusion matrices
for each of the four CNN classifiers, enabling a side-by-side
comparison of their performance (true positives, false negatives,
etc.) in rib fracture identification.

Conclusion

This study applied four CNNs: AlexNet, VGG16, GoogLeNet, and
MobileNetV?2 to classify rib fracture X-ray images, with YOLOv4
for localization and comparisons to RetinaNet and EfficientDet.
Future work should expand datasets and refine models.
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