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ABSTRACT
Rib fractures account for 39% to 50% of chest trauma cases, with X-ray imaging being the primary diagnostic 
tool in clinical practice. However, diagnosing rib fractures remains challenging due to multiple factors, including 
poor patient positioning caused by pain, overlapping rib structures that obscure fractures, and suboptimal X-ray 
exposure settings that reduce contrast or introduce noise. Studies indicate that X-ray sensitivity for detecting rib 
fractures ranges from only 12% to 40.7%, with up to 50% of fractures remaining undetected, whereas computed 
tomography (CT) achieves a detection rate of 39% to 66%. Although CT improves fracture detection, its high cost 
and radiation exposure limit its routine use in clinical settings. This study collected X-ray images from patients 
with CT-confirmed rib fractures and trained four convolutional neural networks (CNNs): AlexNet, VGG16, 
GoogLeNet, and MobileNetV2 to enhance AI-based fracture detection. The optimized CNN models effectively 
identified suspected rib fractures, achieving a classification accuracy of 0.77 to 0.98. We further applied the 
YOLOv4 object detection model to precisely locate fractures on X-ray images, with detailed loss function analysis 
using CIoU for bounding box regression. For comparative purposes, we discuss RetinaNet's Focal Loss (FL = (1-
p)^γ CE, with γ=2) as an alternative to YOLOv4's BCE, potentially addressing class imbalance more effectively. 
Additionally, EfficientDet was explored as a scalable detector to complement YOLOv4, offering multi-scale feature 
fusion via BiFPN. The final results showed that among 11 X-ray images, the AI model successfully identified the 
exact fracture locations in 7 cases, demonstrating its reliability and clinical potential. This study integrates deep 
learning and image recognition techniques, proposing an AI-based solution that balances diagnostic accuracy 
and clinical feasibility. By leveraging CNNs to enhance X-ray interpretation and YOLOv4 for precise fracture 
localization, with comparisons to RetinaNet and EfficientDet, this method reduces the burden on physicians, 
improves diagnostic efficiency, and optimizes medical resource allocation. The findings confirm that this AI model 
can effectively assist in the initial assessment of rib fractures, providing clinicians with more accurate decision-
making support and advancing AI-assisted diagnostic tools in healthcare.
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Introduction 
Rib fractures are among the most common injuries in blunt chest 
trauma, accounting for approximately 39% to 50% of all cases 
[1,2]. Clinically, X-ray imaging is widely used as the primary 

screening tool due to its accessibility and low cost. However, its 
diagnostic accuracy can be affected by several factors, including 
poor patient positioning due to pain, improper exposure settings, 
overlapping rib structures, low contrast resolution, and interference 
from concomitant chest injuries such as pulmonary contusions or 
chest wall hematomas [3]. Studies indicate that the sensitivity of 
X-ray for detecting rib fractures ranges from only 12% to 40.7%, 
with up to 50% of fractures going undetected [4-7]. Additionally, 
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interpretation can vary among physicians due to differences in 
experience, leading to inter-observer variability and increasing 
diagnostic uncertainty. In contrast, computed tomography (CT) 
provides higher resolution, clearly visualizing subtle fractures 
and surrounding soft tissue injuries, with a detection rate of 
approximately 39% to 66% [8,9]. However, the high cost and 
potential radiation exposure associated with CT limit its routine 
use in initial screenings [10]. Therefore, the development of 
artificial intelligence (AI)-assisted diagnostic tools to improve rib 
fracture detection on X-ray images and reduce missed diagnoses 
has become an urgent clinical need.

In recent years, AI technology has been widely applied in 
musculoskeletal imaging, including the automatic detection of 
long bone fractures, pelvic and spinal fractures, as well as the early 
diagnosis of osteoporosis and metastatic bone lesions [11,12]. 
However, detecting rib fractures using AI remains challenging due 
to the overlapping rib structures and low contrast in X-ray images, 
which make fracture identification more difficult. Compared to 
other skeletal injuries, rib fractures have less distinct imaging 
features, and their fracture lines are often unclear, making it 
harder for AI models to learn and interpret them accurately [13]. 
Current AI models still show inconsistent performance in rib 
fracture detection, particularly in identifying cortical irregularities 
and small fractures. Further optimization of AI algorithms, with 
improved feature extraction and integration of object detection 
techniques, could enhance the accuracy of rib fracture detection on 
X-rays, reduce inter-observer variability, and increase diagnostic 
confidence in clinical practice [14].

This study focuses on developing an AI-assisted diagnostic system 
to enhance rib fracture detection on X-ray images while reducing 
diagnostic uncertainty and inter-observer variability. To achieve 
this, we implemented four convolutional neural network (CNN) 
models—AlexNet, VGG16, GoogLeNet, and MobileNetV2—
leveraging transfer learning to train AI models to distinguish 
between normal and rib fracture images. These deep learning models 
automatically extract image features and recognize fracture-specific 
visual patterns, improving classification accuracy. Building on this 
foundation, we integrated the YOLOv4 object detection model to 
annotate and localize fracture regions. This enables the AI system 
not only to identify the presence of rib fractures but also to precisely 
delineate the affected areas, facilitating faster and more accurate 
diagnosis. YOLOv4 offers real-time detection capabilities within 
a single neural network framework, simultaneously performing 
classification and localization, making it more suitable for clinical 
applications than traditional algorithms. For comparative analysis, 
we explore RetinaNet's Focal Loss as an alternative classification 
loss and EfficientDet as a complementary detector.

By combining CNN-based classification with YOLOv4 object 
detection, and contrasting with RetinaNet and EfficientDet, 
this approach establishes a highly efficient, low-cost, and low-
radiation-risk AI-assisted diagnostic tool to address the limitations 
of X-ray imaging in rib fracture detection. Compared to computed 
tomography (CT), this method significantly enhances fracture 

detection and localization accuracy without additional radiation 
exposure while also reducing diagnostic variability and the risk 
of missed fractures. With this AI-driven technology, clinicians 
will be able to interpret X-ray images more accurately, refine 
diagnostic decision-making, and provide safer and more effective 
patient care.

Methods 
Subjects
Our retrospective study was approved by our institutional review 
board and informed consent was waived. This study adopted 
a retrospective design and extracted relevant images from the 
National Institutes of Health (NIH) Chest X-ray Dataset. A total of 
186 X-ray images without rib fractures were selected and labeled 
as "Normal," while 87 X-ray images from patients with CT-
confirmed rib fractures were labeled as "Rib fracture." To balance 
the dataset, image augmentation techniques, such as horizontal 
flipping, were applied to the rib fracture images, increasing their 
count to 186. This resulted in a total dataset of 372 images (186 
Normal, 186 Rib fracture).

The dataset was then divided into three subsets: a training set 
(Train: 122 Normal, 122 Rib fracture), a validation set (Validation: 
33 Normal, 33 Rib fracture), and a test set (Test: 31 Normal, 31 
Rib fracture). During preprocessing, all images were resized to 
match the input requirements of the transfer learning models. The 
overall dataset composition and preprocessing steps are illustrated 
in Figure 1.

The study dataset was obtained from the NIH Chest X-ray Database 
and included 186 X-ray images without rib fractures (labeled 
as "Normal") and 87 X-ray images with rib fractures confirmed 
by CT (labeled as "Rib fracture"). To balance the dataset, image 
augmentation techniques, such as horizontal flipping, were applied 
to the rib fracture images, increasing their count to 186. This 
resulted in a total of 372 images (186 Normal, 186 Rib fracture). 
The dataset was then divided into training (122 Normal, 122 Rib 
fracture), validation (33 Normal, 33 Rib fracture), and test sets (31 
Normal, 31 Rib fracture). During preprocessing, all images were 
resized to match the input requirements of the transfer learning 
models, ensuring stable and accurate model training.

Model Architecture and Training
In the first stage, four convolutional neural networks (CNNs)—
AlexNet, VGG16, GoogLeNet, and MobileNetV2 were used for 
transfer learning to classify normal and rib fracture X-ray images.

The structure of CNNs consists of three main components: 
convolutional layers, pooling layers, and fully connected layers. 
The convolutional layer applies convolution operations to extract 
local features from input images, converting them into numerical 
feature maps that help identify key patterns such as edges, textures, 
and shapes. The pooling layer then reduces the dimensionality of 
the feature maps using either max pooling or average pooling, 
which decreases the number of parameters and computational 
complexity while retaining essential features, improving model 
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efficiency. Finally, the fully connected layer integrates the 
extracted features, performs weight calculations, and classifies the 
input as either normal or rib fracture, generating the final model 
output.

AlexNet Transfer Learning
This program adopts AlexNet as the CNN architecture, originally 
proposed by Alex Krizhevsky in 2012 [15]. The model consists 
of eight layers, with the first five serving as convolutional layers, 
responsible for extracting local features such as edges, textures, 
and shapes through convolution operations. These layers are 
paired with pooling layers, which perform dimensionality 
reduction to decrease computational complexity and enhance 
feature representation. The final three layers are fully connected 
layers, which integrate the extracted features and apply weight 
calculations to classify the input images as either normal (Normal) 
or rib fracture (Rib Fracture).

Convolutional Operation: y = x * w + b (where * denotes 
convolution).
ReLU Activation Function: f(x) = max(0, x).

To improve model performance and prevent overfitting, this 
program employs ReLU (Rectified Linear Unit) as the activation 
function, ensuring effective gradient propagation and mitigating 
the vanishing gradient problem associated with traditional 
functions. Additionally, Dropout is applied during training to 
randomly deactivate certain neurons, reducing dependence on 
specific features and enhancing generalization. To further increase 
adaptability, data augmentation techniques such as image flipping, 
rotation, translation, and contrast adjustment are implemented 
to expand the dataset and improve model robustness. For 
computational efficiency, the training process utilizes two GPUs 
for parallel computing, accelerating weight updates and reducing 
model convergence time, allowing the network to reach optimal 
performance more quickly. Our implementation was trained on 
122 normal and 122 rib fracture X-ray images, validated with 33 
images per class, and tested on 31 images per class, achieving a 
classification accuracy of 97%.

VGG16 Transfer Learning
VGGNet was developed by the Visual Geometry Group (VGG) at 
the University of Oxford in collaboration with Google DeepMind 
in 2014 and is recognized as one of the representative CNN 
architectures in deep learning research [16].

In this study, the model consists of 16 layers, including 13 
convolutional layers with 3×3 kernels and 3 fully connected layers. 
By stacking small convolutional filters, the network enhances 
feature extraction capabilities while maintaining a relatively low 
number of parameters, thereby improving computational efficiency 
and generalization ability. The model processes 224×224 three-
channel RGB images as input and employs a progressively deeper 
convolutional structure to capture fine-grained image features, 
demonstrating stable performance and adaptability in large-scale 
image classification and feature extraction tasks. Trained on our 
dataset, VGG16 achieved a test accuracy of 80%, demonstrating 
its effectiveness in rib fracture detection.

Convolutional Operation (3×3 kernels): y = x * w + b.
ReLU Activation Function: f(x) = max(0, x).

GoogLeNet Transfer Learning
GoogLeNet is a deep CNN architecture trained on over one 
million images, consisting of 144 layers and capable of classifying 
1,000 object categories. The model introduces a modular design 
(Modularization) by replacing traditional convolutional layers 
with Inception modules, enhancing computational efficiency and 
improving feature extraction.

In deep learning, increasing the number of network layers can 
theoretically improve model accuracy. However, as the depth 
increases, computational cost and the number of parameters 
also rise, which may lead to gradient vanishing and overfitting, 
negatively affecting model convergence and generalization. 
To address these issues, GoogLeNet incorporates an Inception 
structure, where convolutional layers and pooling layers are 
stacked in parallel [17]. It integrates multiple convolutional kernels 
of different sizes along with max pooling, using concatenation 
operations to merge outputs into a single Inception module. The 
overall GoogLeNet architecture is composed of multiple Inception 
modules. Our experiments demonstrated a classification accuracy 
of 87% on the test dataset, reinforcing the model’s capability in 
medical image interpretation.

Inception Module: Output = Concat(Conv1×1, Conv3×3(reduced), 
Conv5×5(reduced), MaxPool3×3 + 1×1).

MobilenetV2 Transfer Learning
In the field of deep learning, Google introduced the MobileNetV1 
architecture in 2017, incorporating depthwise separable convolution 
to optimize computational efficiency. This approach breaks down 

Figure 1: Sample dataset division.
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traditional convolution operations into two separate steps: depthwise 
convolution, which applies a single filter per input channel, and 
pointwise convolution, which uses 1×1 convolutions to combine 
the output from the depthwise step. By adopting this method, 
MobileNetV1 significantly reduces computational complexity 
and the number of parameters while maintaining output accuracy, 
making it well-suited for resource-constrained devices.

In 2018, Google introduced MobileNetV2, which further improved 
the architecture by retaining the benefits of depthwise separable 
convolutions while introducing inverted residuals and linear 
bottlenecks. These enhancements further reduced model size 
and computational cost while improving classification accuracy, 
allowing the model to remain lightweight without compromising 
feature extraction capability. Due to these innovations, the 
MobileNet series has become an efficient and practical deep 
learning solution, particularly for mobile devices and embedded 
systems where computational resources are limited [18,19].

MobileNetV2 is designed for computational efficiency, utilizing 
depthwise separable convolutions and inverted residual blocks to 
reduce model complexity without compromising accuracy. This 
structure is particularly advantageous for real-time diagnostics and 
mobile healthcare applications.

Depthwise Separable Convolution: Depthwise (one filter per channel): 
ŷ = x * d; Pointwise (1×1 combines channels): y = ŷ * w + b.

With a test accuracy of 77%, MobileNetV2 demonstrated a balance 
between computational efficiency and classification performance.

Table 1: Rib fracture prediction accuracy in transfer learning models.
Transfer Learning 
Model Training accuracy Validation 

accuracy Test accuracy

AlexNet 1.00 1.00 0.98
VGG16 0.93 0.91 0.81
GoogLeNet 0.97 0.89 0.87
MobilenetV2 0.74 0.78 0.77

YOLOv4
Unlike conventional classification-based models, YOLOv4 is an 
advanced object detection framework capable of localizing rib 
fractures by predicting bounding boxes directly within a single 
forward pass. This capability significantly enhances its suitability 
for real-time radiographic analysis [20]. The model was trained 
on 70 manually annotated rib fracture images and tested on an 
additional 11 images. While 7 out of 11 cases were correctly 
detected, 4 cases were missed, indicating that additional data 
augmentation and model refinement are necessary for optimal 
performance. For object detection, we utilized the YOLOv4 
framework with anchor box sizes initially set to the default nine 
anchors (spanning small, medium, and large scales) or refined 
via k-means clustering on the ground-truth bounding boxes to 
better fit rib fracture dimensions. During training and evaluation, 
an intersection-over-union (IoU) threshold of 0.5 was used to 
determine true positive detections (a standard criterion in detection 
tasks). YOLOv4’s loss function incorporated the Complete 

IoU (CIoU) loss for bounding box regression, which improves 
localization accuracy and convergence speed: CIOU = IoU - ρ²/c² 
- αv (where v measures aspect ratio, α is a trade-off). At inference, 
a confidence probability threshold of 0.25 was applied to filter out 
low-confidence predictions, balancing sensitivity and precision in 
the detection results [21-24].

Loss Function: Loss = λ_coord ∑ 1^{obj} (1 - CIoU) + ∑ BCE.

Non-Maximum Suppression (NMS) was employed to refine the 
predictions by eliminating redundant bounding boxes, using an 
Intersection-over-Union (IoU) threshold typically set between 0.3 
and 0.5.

Implementation Details:
Input resolutions: 608×608 or 416×416 pixels
Batch sizes: 8–16
Dynamic learning rate adjustments for optimized convergence
In contrast to YOLOv4's use of BCE for classification, RetinaNet 
employs Focal Loss, FL = (1-p)^γ CE (with γ=2), which modulates 
the loss to focus on hard examples—potentially reducing the 
impact of background dominance in X-ray images and improving 
detection from 7/11 to higher rates in future iterations [25].

Table 2: YOLOv4 identification accuracy on rib fracture regions.
Case Identification accuracy
1 Not detected
2 0.37
3 0.90
4 Not detected
5 0.90
6 0.99
7 0.28
8 Not detected
9 Not detected
10 0.41
11 0.30

EfficientDet (Comparative Exploration)
For comparative analysis, we explored EfficientDet, a scalable 
object detection model that builds on EfficientNet backbones 
with a bidirectional feature pyramid network (BiFPN) for multi-
scale feature fusion [24]. EfficientDet's compound scaling method 
uniformly adjusts depth, width, and resolution to optimize 
performance, making it suitable for medical imaging with limited 
datasets like our 70 annotated images. Its loss combines Focal 
Loss for classification (FL = -α (1-p)^γ log p) and Smooth L1 for 
regression. While not fully implemented in this study, EfficientDet 
could complement YOLOv4 by improving efficiency on varying 
resolutions, potentially addressing subtle fracture lines better in 
radiographic challenges.

Results 
Training performance comparison of CNN models: AlexNet, 
VGG16, GoogLeNet, and MobileNetV2 in transfer learning 
for rib fracture classification
In Figure 2A, the training performance of the AlexNet model is 
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shown through its accuracy curve, tracking the changes in both 
training and validation accuracy over time. The model learns 
rapidly in the early stages, with accuracy increasing sharply and 
stabilizing around 50 epochs. By the end of training, both training 
and validation accuracy reach 1.00, indicating that the model has 
fully learned the dataset features without signs of overfitting. The 
test evaluation further confirms its effectiveness, achieving a test 
accuracy of 0.98, demonstrating strong generalization to unseen 
data. Figure 2B presents the loss curve, showing a steady decrease 
in loss values as training progresses. Initially, the loss is high, but it 
declines consistently and stabilizes after 50 epochs, approaching zero, 
which suggests effective model convergence and learning efficiency.

The training performance of the AlexNet model using transfer 
learning for rib fracture classification in X-ray images. (A) shows 
the accuracy curve, depicting changes in accuracy for both the 
training and validation datasets. As training progresses, the model 
reaches a final training accuracy of 1.00 and a validation accuracy 
of 1.00. These results indicate that the model learns effectively 
without signs of overfitting. The test evaluation further confirms 
its effectiveness, achieving a test accuracy of 0.98, demonstrating 
strong generalization to unseen data. (B) presents the loss curve, 
tracking changes in loss during training. By the end of training, 
both training and validation loss values approach zero, indicating 
effective model convergence and optimal learning performance.

In Figure 3A, the VGG16 model follows a more gradual learning 
process. Accuracy steadily improves as training progresses, and 
the values become stable around 35 epochs. By the end of training, 

the model reaches a final training accuracy of 0.93 and a validation 
accuracy of 0.91, indicating strong learning performance with 
minimal overfitting. The test evaluation further supports the 
model’s reliability, yielding a test accuracy of 0.81, which confirms 
its ability to generalize well to new data. In Figure 3B, the loss 
curve shows a smooth decline in both training and validation loss, 
with loss values stabilizing at 0.37 by the end of training. This 
suggests that the model converges effectively and maintains stable 
learning behavior.
 
The training performance of the VGG16 model using transfer 
learning for rib fracture classification in X-ray images. (A) shows 
the accuracy curve, representing the progression of training and 
validation accuracy over time. The model gradually improves 
throughout training, ultimately achieving a training accuracy 
of 0.93 and a validation accuracy of 0.91, suggesting effective 
learning with minimal overfitting. The test evaluation further 
supports the model’s reliability, with a test accuracy of 0.81, 
indicating a strong ability to generalize to new data. (B) presents 
the loss curve, showing the decline in both training and validation 
loss as the model learns. By the end of training, the loss values 
stabilize at 0.37, confirming effective convergence and consistent 
learning behavior.

In Figure 4A, the GoogLeNet model displays steady learning 
progression, with accuracy improving gradually and stabilizing 
earlier, around 20 epochs. By the end of training, the model 
achieves a training accuracy of 0.97 and a validation accuracy 
of 0.89, demonstrating effective feature learning with controlled 

Figure 2: AlexNet transfer learning training curve.
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Figure 3: VGG16 transfer learning training curve.

Figure 4: GoogLeNet transfer learning training curve.

overfitting. The test evaluation further confirms its strong 
generalization ability, reaching a test accuracy of 0.87. Figure 4B 
presents the loss curve, which shows a rapid decline during early 
training before stabilizing around 20 epochs. The final loss value 
of 0.42 confirms the model’s learning stability and convergence.

The training performance of the GoogLeNet model using transfer 
learning for rib fracture classification in X-ray images. (A) shows 
the accuracy curve, depicting the progression of training and 
validation accuracy over time. The model demonstrates steady 
improvement throughout training, ultimately reaching a training 
accuracy of 0.97 and a validation accuracy of 0.89, indicating 
effective feature learning with controlled overfitting. The test 
evaluation further supports the model’s reliability, achieving a test 
accuracy of 0.87, suggesting strong generalization to unseen data. 
(B) presents the loss curve, showing the reduction in both training 
and validation loss as the model learns. By the end of training, the 
loss values stabilize at 0.42, confirming effective convergence and 
consistent learning performance.

Finally, Figure 5A illustrates the MobileNetV2 model, which 
exhibits a steady and incremental improvement in accuracy. The 
accuracy curve shows that learning stabilizes earlier than the other 
models, around 12 epochs. By the end of training, the model reaches 
a training accuracy of 0.74 and a validation accuracy of 0.78, 
demonstrating efficient learning with balanced generalization. The 
test evaluation further supports its classification ability, with a test 
accuracy of 0.77, indicating reliable performance in identifying rib 
fractures. In Figure 5B, the loss curve presents a gradual but steady 
decrease, with loss values stabilizing around 12 epochs before 
settling at 0.57. This suggests that the model achieves convergence 
efficiently while maintaining stable learning performance.

The training performance of the MobileNetV2 model using 
transfer learning for rib fracture classification in X-ray images. (A) 
shows the accuracy curve, representing the progression of training 
and validation accuracy over time. The model exhibits steady 
learning throughout training, achieving a training accuracy of 
0.74 and a validation accuracy of 0.78, indicating effective feature 
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learning with a balanced generalization. The test evaluation further 
supports the model’s performance, with a test accuracy of 0.77, 
demonstrating a good ability to classify unseen data. (B) presents 
the loss curve, showing the decline in both training and validation 
loss as the model learns. By the end of training, the loss values 
stabilize at 0.57, confirming effective convergence and stable 
learning behavior.

Overall, the training performance of the four CNN models—
AlexNet, VGG16, GoogLeNet, and MobileNetV2—demonstrates 
varying learning behaviors and convergence patterns in rib fracture 
classification. AlexNet achieves perfect accuracy (1.00) for both 
training and validation, indicating strong learning capacity but 
requiring further evaluation to ensure real-world applicability. 
VGG16 exhibits a steady learning process, with training and 
validation accuracy stabilizing at 0.93 and 0.91, respectively, and a 
lower final loss, suggesting reliable feature extraction with minimal 
overfitting. GoogLeNet stabilizes earlier (around 20 epochs), 
reaching a test accuracy of 0.87, demonstrating efficient learning 
and strong generalization. MobileNetV2, designed for lightweight 
performance, stabilizes the fastest (around 12 epochs) but achieves 
slightly lower accuracy (test accuracy of 0.77), indicating a trade-
off between efficiency and classification power. The loss curves 
further confirm the convergence of all models, with loss values 
ranging from near 0 (AlexNet) to 0.57 (MobileNetV2).

Compared to previous similar studies (21), which primarily relied 
on high-resolution CT scans for rib fracture classification, our 
study focuses on X-ray imaging, making it more accessible, cost-
effective, and practical for routine clinical use. This distinction is 
particularly relevant when evaluating the computational efficiency 
and generalization ability of different CNN models. While CT-
based models may offer higher resolution, their clinical application 
is often limited by cost, radiation exposure, and availability. In 
contrast, our study demonstrates that X-ray-based deep learning 
models can achieve high accuracy in rib fracture classification 
while providing a feasible and scalable alternative for clinical 
practice. These findings highlight the importance of selecting a 
model that optimally balances diagnostic performance with real-
world applicability.

YOLOv4 in detecting and localizing rib fracture regions on 
X-ray images
Figure 6 evaluates the performance of YOLOv4 in detecting rib 
fractures on X-ray images. The model was trained on 70 annotated 
images, where expert radiologists labeled fracture regions to 
enhance detection accuracy. It was then tested on 11 X-ray images 
with confirmed rib fractures, correctly identifying fractures in 7 
out of 11 cases, achieving a detection accuracy of 64%. 

This study employed YOLOv4 for the automatic detection of rib 
fracture regions. The model was trained on 70 X-ray images, where 
expert radiologists manually annotated the fracture regions to 
enhance its ability to recognize distinct fracture patterns. After the 
training phase, the model was tested on 11 X-ray images confirmed 
to contain rib fractures to evaluate its detection performance. The 
results showed that YOLOv4 successfully identified fracture 
regions in 7 out of 11 test images, achieving a detection accuracy of 
approximately 64%. These findings highlight YOLOv4's potential 
as an assistive diagnostic tool, providing a reliable approach for 
automated rib fracture detection while reducing the burden on 
clinicians and improving diagnostic efficiency.

Compared to the YOLOv3-based study [22], which achieved high 
sensitivity but suffered from a high false-positive rate, YOLOv4 
improves detection accuracy and reduces false alarms through 
advanced bounding box refinement techniques. Additionally, while 
the Detectron2 study directly used X-ray for model training and 
inference [23], our study has a critical advantage in data reliability. 
Instead of using randomly selected X-ray, our dataset consists 
of X-ray taken from patients with CT-confirmed rib fractures, 
ensuring that the ground truth for fracture presence and location 
is more accurate. This approach minimizes misclassification errors 
due to undetected fractures in X-ray imaging, a known limitation 
of rib fracture detection.

By incorporating CT-confirmed cases, our study enhances the 
reliability of the training dataset, leading to more precise rib 
fracture localization and improved clinical applicability. Future 
work should focus on expanding the dataset, further refining 
detection accuracy, and integrating YOLOv4 into multi-stage 

Figure 5: MobilenetV2 transfer learning training curve.
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deep learning frameworks to optimize its diagnostic reliability and 
clinical adoption.

Conclusion 
This study applied four CNNs: AlexNet, VGG16, GoogLeNet, and 
MobileNetV2 to classify rib fracture X-ray images. The dataset was 
constructed by first identifying cases diagnosed with rib fractures 
through computed tomography (CT) and then retrospectively 
collecting their corresponding X-ray images. Using deep learning 
techniques, the model aimed to distinguish differences between rib 
fracture and normal X-ray images for classification. The transfer 
learning inference results showed an accuracy of 0.98 for AlexNet, 
0.81 for VGG16, 0.87 for GoogLeNet, and 0.77 for MobileNetV2. 
Additionally, the YOLOv4 object detection model achieved an 
accuracy of approximately 64% in identifying rib fracture regions.

This study demonstrates the potential of CNNs in image 
classification and object detection for rib fractures. However, for 
real-world clinical applications, a larger dataset is necessary to 

improve the stability and practical usability of the model. Although 
the model successfully identified some fracture regions with limited 
training data, its feature extraction capability remains constrained 
by the structure of different neural networks. Therefore, expanding 
the dataset and enhancing computational power will be key to 
further improving the model’s accuracy and clinical applicability 
in medical imaging.

Discussion
This study's approach is unique in focusing on rib fracture detection 
in chest X-ray images—a more challenging but widely accessible 
modality—rather than relying on higher-resolution CT scans as 
in many prior works [21-23]. Moreover, it is among the first to 
apply the YOLOv4 detector for this task, whereas most previous 
studies have utilized earlier YOLO versions (e.g., YOLOv3) or 
its lightweight variant YOLOv3-tiny, underscoring the novelty of 
our methodology. How does Focal Loss in RetinaNet potentially 
outperform YOLOv4's BCE in imbalanced X-ray data, by down-
weighting easy negatives and focusing on hard fracture examples? 

Figure 6: YOLOv4-based rib fracture region detection in X-ray images.
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What advantages might EfficientDet's BiFPN offer over YOLOv4 
for multi-scale fractures, such as improved fusion of features 
from varying rib sizes? To further enhance result transparency 
and interpretability, we recommend including confusion matrices 
for each of the four CNN classifiers, enabling a side-by-side 
comparison of their performance (true positives, false negatives, 
etc.) in rib fracture identification.

Conclusion
This study applied four CNNs: AlexNet, VGG16, GoogLeNet, and 
MobileNetV2 to classify rib fracture X-ray images, with YOLOv4 
for localization and comparisons to RetinaNet and EfficientDet. 
Future work should expand datasets and refine models.
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