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ABSTRACT
This is a forward-thinking theoretical investigation and may not have practical values for current imaging systems. 
This investigation assumes that there is no noise in the measurements, the signals are continuous (not sampled), the 
computer has perfect precession, and there are no round-off errors. Under these unrealistic conditions, we can form 
a Maclaurin series expansion in the Fourier domain with measurements in a small scanning angular range. We show 
that this Maclaurin series expansion converges in the entire Fourier space. As a result, a complete data set is available 
for image reconstruction. The Fourier domain is complex; the expansion coefficients are most likely complex with 
real parts and imaginary parts. Computer simulations are performed to illustrate a 2D spatial-domain image can be 
obtained if a Fourier-domain truncated Maclaurin series expansion is available. Our goal is to use minimum data for 
trust-worthy reconstruction without any prior knowledge and training data.
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Abbreviations
The following abbreviations are used in this manuscript:
1D: One dimensional, 2D: Two dimensional, TV: Total variation.

Introduction
There are many data sufficiency conditions for various imaging 
modalities and imaging geometries [1-15]. For example, in two-
dimensional (2D) imaging, the parallel-beam system requires a 
scanning angular range of 180°. The fan-beam system requires a 
scanning angular range of 180° plus the fan angle. If the scanning 
trajectories satisfy the data sufficiency conditions, we have stable 
image reconstruction algorithms, which can be analytical or 
iterative. 

Even when the angular range satisfied the data sufficiency 
conditions, the sampling on the detector may not be adequate. If 
the detector is not large enough to cover the object to be imaged, 
the projection data is truncated, resulting in an under-sampling 

situation [16-33]. Another under-sampling situation is that the 
angular sampling is not dense enough, which is also known as few-
view tomography [33-49]. 
 
When data is insufficient, some other assumes can make the inverse 
problem solvable. One of such situations is compressed sensing 
[50-60]. The compressed sensing methods consider the inverse 
problem solutions, which are sparse, that is, most of the elements 
are zero. In tomographic application, the solutions x can be assumed 
as piecewise constant. The derivative of x of the finite difference of 
x is a sparse image. The compressed sensing theory suggests that 
a usable sparse solution can be obtained by minimization of the L0 
norm of the sparse solution x. For a piecewise-constant solution, 
we minimize the L0 norm of the finite difference of x. The L0 norm 
minimization is not an easy task, because the L0 norm of an image 
is the total count of non-zero image pixels. The gradient of this 
total count with respect to each pixel does not exist. The gradient-
based optimization algorithms do not work. 

A practical work around is to use the L1 norm to approximate the 
L0 norm. For a piecewise-constant image, this remedy leads to the 
total variation (TV) minimization algorithms. In this paper, we 
do not assume that the images are piecewise constant. We do not 
treat the image reconstruction problem as a compressed sensing 
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problem. We do not discretize the imaging problem. We assume 
the image and its projection measurements are continuous.

At the beginning of this section, we state that a data sufficiency 
condition for a 2D parallel-beam imaging problem is to acquire 
data over an angular range of 180°. We argue that this data 
sufficiency condition is not necessary. This condition is derived 
based on the assumption that the entire Fourier space must be 
completely measured. We will show in the next section that we 
do not have to measure the entire Fourier space to capture the 
complete information about the spatial-domain object. In fact, 
we only need to know the Fourier transform at one location, for 
example, at the center. 

This paper assumes a perfect ideal world, where the detected signals 
are continuous and noiseless. As will be shown in the next section, 
perfect high-order mixed partial derivatives can be calculated by 
the measurements. All these assumptions guarantee that we can 
form a 2D Taylor series expansion in the Fourier domain of the 
object. This paper is forward-thinking, and we may not be able 
to implement the proposed system using today’s technology. It 
is likely that we are unable to do computer simulations for the 
proposed system due to the round-off errors and finite word-length 
limits in a practical computer. The errors may cause the Taylor 
series expansion unstable or even diverge.

For line-integral based imaging systems such as x-ray computer 
tomography (CT), positron emission tomography (PET), and single 
photon emission computed tomography (SPECT), it is challenging 
to estimate the derivatives in the Fourier domain. We will use the 
Central Slice Theorem to suggest some potential strategies in the 
next section. 

Methods
In mathematics, a “compact support” refers to a function that 
is only non-zero within a bounded, closed set (a compact set), 
meaning it becomes zero outside of that specific region. In medical 
imaging, the patient’s body always has compact support.

If a function has a compact support, the Fourier transform of 
this function is an “entire function” (also known as holomorphic 
function and analytic function). An entire function has many 
desirable properties. An entire function can be differentiated 
with any order at any point in the complex plane and has no 
singularities. The Taylor series expansion of an entire function 
converges everywhere in the complex plane.

Let 0 ≤ f (x,y) ≤ M be a 2D real function that has finite support. 
Assume that  vanishes for  |x| ≥ R and |y| ≥ R According to the 
Paley-Wiener theorem [61], for a square-integrable function with a 
finite support, its Fourier transform is holomorphic.
The 2D Fourier transform of  is given as

 		  (1)

Interchanging of integration and summation is allowed because 
f is supported on a finite region and because the series for the 
exponential function converges absolutely and uniformly [61].

From (1), we have

We also have

The Maclaurin series expansion is 

 An alternative expression for this Maclaurin series expansion is 

From the right-hand side of (3), we learn that if a mixed partial 
derivative is evaluated in the image domain, the whole image 

 must be used in the calculation. Unfortunately, we do not 
know of any imaging system that can measure or calculate the 
double integral in (3).

Our innovative strategy is to use the directional derivatives to 
estimate the mixed partial derivatives. Let  be a rotated 
version of  with a rotation angle θ. The Radon transform 
(i.e., the parallel-beam projections) is given by

The Fourier transform of  with respect to variable s is

where  is the frequency variable corresponding to s. Let the 
2D Fourier transform of  be . According to the 
Central Slice Theorem [1],  is a central slice of  as 
illustrated in Figure 1.

The nth-order directional derivative of  can be calculated 
as the Fourier transform of the nth moment
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Figure 1: The central slice theorem is the relationship between 
 and , which is a central slice of 

It can be shown that the (n+m)th-order directional derivative of 
 and the (n+m)th-order mixed partial derivatives  

are related as

We can prove (9) using the mathematical induction method.
The version of (9) for k = 1 is

which can be immediately obtained by using the definition of 
the directional derivative when the partial derivatives  and 

 exist. 

We now assume that (9) is valid for an integer k. Then

(Let  above)

In the derivation above, we used

which can be readily verified by definition. 
To recap, Eq. (9) is the relationship between the kth-order 
directional derivative and the kth-order mixed partial derivatives. 

Our goal is to form a 2D truncated Taylor series expansion. This 
expansion requires mixed partial derivatives to construct its 
coefficients. 

A kth-order directional derivative of the Fourier transform of 
Radon transform  can be calculated by the Fourier transform 
of the kth moment by Eq. (8).
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There are k+1 mixed partial derivatives of order k. Therefore, we 
need to measure  at k+1 different angles: , , … , and 
solve a system of linear equations:

where
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with  and .

The Taylor coefficients are then determined by the measurements 
at these k+1 angles: , , … . These angles do not have to 
be uniformly distributed over 180°. They can, for example, be 
densely distributed in a very small angular range (say, 40°).

Thus, if an imaging system is able to measure all information of 
the object in the Fourier domain at (0, 0), including higher-order 
mixed partial derivatives at (0, 0), a Maclaurin series expansion can 
be formed; this expansion converges everywhere in the complex 
plane. Since this expansion converges, a truncated expansion (with 
finite number of terms) can be used to approximate the Fourier-
domain function . 

The next step is to evaluate the truncated Maclaurin expansion of 
 at any location (u, v). For example, we can evaluate the 

expansion at a regular grid of (u, v). Finally, we perform the 2D 
inverse Fourier transform to obtain the reconstructed image .

The “entire function” idea presented above does not apply in the 
spatial domain. The spatial domain image cannot be an “entire 
function” because the spatial domain image has a finite support and 
thus the image must have discontinuities. Discontinuity prevents 
the spatial domain images from being differentiable everywhere.

In order to gain some intuitive about the feasibility whether a 
truncated Taylor series expansion is useful in image reconstruction, 
the next section will present a computer simulation example using 
an imperfect computer, which has limitations such as a finite-word 
length and round-off errors. 

A square phantom  has a known, close form 2D Fourier 
transform , which is a product of two sinc functions:

where the parameter a determines the width of the square. It is 
known that the Maclaurin series expansion for the sine function 
is given as

This immediately gives

Therefore, (18) becomes

A truncated version of (21) is

Results
A 1D Fourier transform pair is shown Figure 2, where the left 
diagram is in the 1D Fourier domain, and the right diagram is in 
the spatial domain. The left diagram contains two curves. The blue 
solid curve is a section of the sinc function. The orange broken 
curve is a truncated Maclaurin series expansion approximation with 
50 terms of (20) and . The right diagram also contains two 
curves. The blue solid curve is the 1D inverse Fourier transform 
of the section of the sinc function shown in the left diagram. The 
broken orange curve is the 1D inverse Fourier transform of the 
truncated Maclaurin series expansion shown in the left diagram. 
The 1D invers Fourier transform was implemented in MATLAB 
numerically using 128 discrete samples over [-1.5, 1.5] for the 
variable u. The MATLAB function ‘ifft’ was used in the computer 
simulation.

(14)

(15)

(16)
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Figure 2: Left: 1D Fourier-domain signals (exact and approximate). Right: 1D IFFT versions for the two curves on the left.

 
Figure 3: Left: 2D Fourier-domain image calculated by MATLAB’s built-in function. Right: 2D IFFT version for the image on the left.

 
Figure 4: Left: 2D Fourier-domain image formed by a truncated 2D Maclaurin series expansion. Right: 2D IFFT version for the image on the left.
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This 1D computer simulation demonstrates that the 50-term 
truncated Maclaurin series expansion is pretty close to the sinc 
function and that the discrete inverse Fourier transform can provide 
a pretty close approximation in the spatial domain. In other words, 
the “ifft” is not ill-conditioned.

A 2D Fourier transform pair is shown Figure 3, where the left 
diagram is  in the 2D Fourier domain and the right diagram is 
its 2D inverse Fourier transform in the spatial domain. The object 
is the difference of two squares. The bigger square has a parameter 

 and intensity of 1. The smaller square has a parameter 
 and intensity of 0.7. Thus,  is the difference of two 

2D sinc functions and is calculated using MATLAB’s built-in sine 
function using discrete samples of  and , 
in a 128 × 128 regular grid. Taking MATLAB’s 2D inverse Fast 
Fourier Transform ‘ifft2,’ the left image  becomes the right 
image .

Figure 4 is almost the same as Figure 3, except that the Fourier 
domain image on the left is a truncated version of the Taylor series 
expansion (22) with a maximum value k being 50. 

This 2D computer simulation demonstrates that the truncated 
Maclaurin series expansion is pretty close to the 2D sinc function 
and that the discrete 2D inverse Fourier transform can provide a 
pretty close approximation in the spatial domain. In other words, 
the “ifft2” is not ill-conditioned.

Discussion and Conclusions
In the spatial domain, the patient image  is a square-integrable 
function with a finite support. Its 2D Fourier transform  
is an entire function on the 2D complex plane. A Taylor series 
expansion at  converges everywhere in the complex Fourier 
space. The function  can be evaluated with this Taylor series 
expansion anywhere in the complex Fourier space. The Taylor 
series expansion coefficients only depend on the local values of 

 around . In other words, the spatial domain image 
 can be reconstructed by the local information of  in 

the Fourier domain. When , the expansion is referred 
to as the Maclaurin series expansion.

This paper assumes that the coefficients of the Taylor series 
expansion can be somehow exactly measured and calculated by 
a future hypothetical scanner. Then a truncated expansion can be 
formed and used for image reconstruction.

This paper considers image reconstruction only from the 
measurements of the object itself. Of course, prior information 
about the object can be useful to supplement unmeasured data. 
Machine learning is an excellent example of how prior information 
can make image reconstruction possible when measurements are 
incomplete. Some other prior information does not need neural 
network training, such as using the total variation (TV) norm 
minimization.

The robustness of the Taylor series expansion method is important 
but is beyond the scope of this paper. The singular value 
decomposition method has been used to study the ill-condition of 
limited angle tomography [62]. 
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