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ABSTRACT

This is a forward-thinking theoretical investigation and may not have practical values for current imaging systems.
This investigation assumes that there is no noise in the measurements, the signals are continuous (not sampled), the
computer has perfect precession, and there are no round-off errors. Under these unrealistic conditions, we can form
a Maclaurin series expansion in the Fourier domain with measurements in a small scanning angular range. We show
that this Maclaurin series expansion converges in the entire Fourier space. As a result, a complete data set is available
for image reconstruction. The Fourier domain is complex; the expansion coefficients are most likely complex with
real parts and imaginary parts. Computer simulations are performed to illustrate a 2D spatial-domain image can be
obtained if a Fourier-domain truncated Maclaurin series expansion is available. Our goal is to use minimum data for
trust-worthy reconstruction without any prior knowledge and training data.
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Abbreviations
The following abbreviations are used in this manuscript:
1D: One dimensional, 2D: Two dimensional, TV: Total variation.

Introduction

There are many data sufficiency conditions for various imaging
modalities and imaging geometries [1-15]. For example, in two-
dimensional (2D) imaging, the parallel-beam system requires a
scanning angular range of 180°. The fan-beam system requires a
scanning angular range of 180° plus the fan angle. If the scanning
trajectories satisfy the data sufficiency conditions, we have stable
image reconstruction algorithms, which can be analytical or
iterative.

Even when the angular range satisfied the data sufficiency
conditions, the sampling on the detector may not be adequate. If
the detector is not large enough to cover the object to be imaged,
the projection data is truncated, resulting in an under-sampling

situation [16-33]. Another under-sampling situation is that the
angular sampling is not dense enough, which is also known as few-
view tomography [33-49].

When data is insufficient, some other assumes can make the inverse
problem solvable. One of such situations is compressed sensing
[50-60]. The compressed sensing methods consider the inverse
problem solutions, which are sparse, that is, most of the elements
are zero. In tomographic application, the solutions x can be assumed
as piecewise constant. The derivative of x of the finite difference of
x is a sparse image. The compressed sensing theory suggests that
a usable sparse solution can be obtained by minimization of the L
norm of the sparse solution x. For a piecewise-constant solution,
we minimize the L, norm of the finite difference of x. The L norm
minimization is not an easy task, because the L, norm of an image
is the total count of non-zero image pixels. The gradient of this
total count with respect to each pixel does not exist. The gradient-
based optimization algorithms do not work.

A practical work around is to use the L, norm to approximate the
L, norm. For a piecewise-constant image, this remedy leads to the
total variation (TV) minimization algorithms. In this paper, we
do not assume that the images are piecewise constant. We do not
treat the image reconstruction problem as a compressed sensing

Int ] Biomed Res Prac, 2025

Volume 5 | Issue 1 |1 of 8



problem. We do not discretize the imaging problem. We assume
the image and its projection measurements are continuous.

At the beginning of this section, we state that a data sufficiency
condition for a 2D parallel-beam imaging problem is to acquire
data over an angular range of 180°. We argue that this data
sufficiency condition is not necessary. This condition is derived
based on the assumption that the entire Fourier space must be
completely measured. We will show in the next section that we
do not have to measure the entire Fourier space to capture the
complete information about the spatial-domain object. In fact,
we only need to know the Fourier transform at one location, for
example, at the center.

This paper assumes a perfect ideal world, where the detected signals
are continuous and noiseless. As will be shown in the next section,
perfect high-order mixed partial derivatives can be calculated by
the measurements. All these assumptions guarantee that we can
form a 2D Taylor series expansion in the Fourier domain of the
object. This paper is forward-thinking, and we may not be able
to implement the proposed system using today’s technology. It
is likely that we are unable to do computer simulations for the
proposed system due to the round-off errors and finite word-length
limits in a practical computer. The errors may cause the Taylor
series expansion unstable or even diverge.

For line-integral based imaging systems such as x-ray computer
tomography (CT), positron emission tomography (PET), and single
photon emission computed tomography (SPECT), it is challenging
to estimate the derivatives in the Fourier domain. We will use the
Central Slice Theorem to suggest some potential strategies in the
next section.

Methods

In mathematics, a “compact support” refers to a function that
is only non-zero within a bounded, closed set (a compact set),
meaning it becomes zero outside of that specific region. In medical
imaging, the patient’s body always has compact support.

If a function has a compact support, the Fourier transform of
this function is an “entire function” (also known as holomorphic
function and analytic function). An entire function has many
desirable properties. An entire function can be differentiated
with any order at any point in the complex plane and has no
singularities. The Taylor series expansion of an entire function
converges everywhere in the complex plane.

Let 0 < f'(x,y) < M be a 2D real function that has finite support.
Assume that f(x, y) vanishes for |[x|> R and |y| > R According to the
Paley-Wiener theorem [61], for a square-integrable function with a
finite support, its Fourier transform is holomorphic.

The 2D Fourier transform of f(x, y) is given as

R R

F(u,v) = [ J.f(x,y)e_zm'{x“ﬂ’ﬂ dxdy

—-R —R

R R o AT
_ J J fan S er;(x;ﬂn] dxdy
“r R k=0 '
w o x R R
= % f f(xu + y)* f(x, v) dxdy.

k=0 -R -R

(1

Interchanging of integration and summation is allowed because
f is supported on a finite region and because the series for the
exponential function converges absolutely and uniformly [61].

From (1), we have

R R
F(0,0) = [ ff(x_y) dxdy. )
“R -R
We also have
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an+mF(0'0) (727{j)k o
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An alternative expression for this Maclaurin series expansion is

F(u,v) = ;% (u% +v %)kF’(0,0) : =)
From the right-hand side of (3), we learn that if a mixed partial
derivative is evaluated in the image domain, the whole image
f (x, ) must be used in the calculation. Unfortunately, we do not
know of any imaging system that can measure or calculate the
double integral in (3).

Our innovative strategy is to use the directional derivatives to
estimate the mixed partial derivatives. Let fa(s,t) be a rotated
version of f(x,y) with a rotation angle 6. The Radon transform
(i.e., the parallel-beam projections) is given by

po®) = [ fols. oot ©)
The Fourier transform of p, (s) with respect to variable s is
Po(ws) = [ po(s)emoeods, @

where w, is the frequency variable corresponding to s. Let the
2D Fourier transform of f(x,y) be F(u, v). According to the
Central Slice Theorem [1], Py(wy) is a central slice of F(u, v) as
illustrated in Figure 1.

The nth-order directional derivative of Py(wy) can be calculated
as the Fourier transform of the nth moment
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Figure 1: The central slice theorem is the relationship between
F(u, v) ad P (w,), Which is a central slice of F(x, v).

It can be shown that the (nt+m)th-order directional derivative of
Ps(w,) and the (n+m)th-order mixed partial derivatives 8" ™ F(u.v)
are related as dun gu™m

d*P, a 3"
ﬂ (cos@ P + sinf 8_) F(u,v). 9)

dawk

We can prove (9) using the mathematical induction method.
The version of (9) for k=1 is
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which can be immediately obtained by using the definition of
the directional derivative when the partial derivatives 9F) and
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We now assume that (9) is valid for an integer k. Then
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In the derivation above, we used
(=" D+ ().

which can be readily verified by definition.
To recap, Eq. (9) is the relationship between the #kth-order
directional derivative and the kth-order mixed partial derivatives.

(12)

Our goal is to form a 2D truncated Taylor series expansion. This
expansion requires mixed partial derivatives to construct its
coefficients.

A kth-order directional derivative of the Fourier transform of
Radon transform pg (s) can be calculated by the Fourier transform
of the kth moment by Eq. (8).
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There are k+1 mixed partial derivatives of order k. Therefore, we
need to measure pg(s) at k+1 different angles: g,, s, ... 6,4,, and
solve a system of linear equations:

(13)

[0%F(0,0) ]
ouldovk-0
9%F(0,0)
6ula‘vk—1

(14)

9*F(0,0)
L Jukov0

[ d*Pp, (0) ]
da)’@‘1
d* Py, (0)

K
dwg,

(15)

(16)

r(O) = [+, () (€™ 6) (sin* 76y, ] (17)

withm=1,2,+,k+1andn=0,1, -,k

The Taylor coefficients are then determined by the measurements
at these k+1 angles: 6,, 8,, ... 8,,,. These angles do not have to
be uniformly distributed over 180°. They can, for example, be
densely distributed in a very small angular range (say, 40°).

Thus, if an imaging system is able to measure all information of
the object in the Fourier domain at (0, 0), including higher-order
mixed partial derivatives at (0, 0), a Maclaurin series expansion can
be formed; this expansion converges everywhere in the complex
plane. Since this expansion converges, a truncated expansion (with
finite number of terms) can be used to approximate the Fourier-
domain function F(y, v).

The next step is to evaluate the truncated Maclaurin expansion of
F(u,v) at any location (#, v). For example, we can evaluate the
expansion at a regular grid of (u, v). Finally, we perform the 2D
inverse Fourier transform to obtain the reconstructed image £ (x, y).

The “entire function” idea presented above does not apply in the
spatial domain. The spatial domain image cannot be an “entire
function” because the spatial domain image has a finite support and
thus the image must have discontinuities. Discontinuity prevents
the spatial domain images from being differentiable everywhere.

In order to gain some intuitive about the feasibility whether a
truncated Taylor series expansion is useful in image reconstruction,
the next section will present a computer simulation example using
an imperfect computer, which has limitations such as a finite-word
length and round-off errors.

A square phantom f(x,») has a known, close form 2D Fourier
transform F (y, 1), which is a product of two sinc functions:

F(u,v) = sinc(a-u) - sinc(a - v)

_sina-w) sin(a-v) (18)

a-u a-v

where the parameter a determines the width of the square. It is
known that the Maclaurin series expansion for the sine function

(—DF 2k+1

£ 2k +1)! * (19

sin(x) =

This immediately gives
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sinc(a-u) = (20)

a-u
Therefore, (18) becomes
F(u,v) =

o (—1)a w2
(Zn + 1)!

(—D)™(a -v)*™
(2m + 1)!

(21)

A truncated version of (21) is

(71)n+m(a . I'._)21'1 (a - 1,.,)21'1'1

Flu,v) = @2n+1'2m+ 1!

k=0 n+m=k
n=0,m=0

(22)

Results

A 1D Fourier transform pair is shown Figure 2, where the left
diagram is in the 1D Fourier domain, and the right diagram is in
the spatial domain. The left diagram contains two curves. The blue
solid curve is a section of the sinc function. The orange broken
curve is a truncated Maclaurin series expansion approximation with
50 terms of (20) and @ = 14. The right diagram also contains two
curves. The blue solid curve is the 1D inverse Fourier transform
of the section of the sinc function shown in the left diagram. The
broken orange curve is the 1D inverse Fourier transform of the
truncated Maclaurin series expansion shown in the left diagram.
The 1D invers Fourier transform was implemented in MATLAB
numerically using 128 discrete samples over [-1.5, 1.5] for the
variable u. The MATLAB function ‘ifft” was used in the computer
simulation.
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Taylor Series Approximation of sinc(au) IFFT of Taylor Series Approximation of sinc(au)
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Figure 2: Left: 1D Fourier-domain signals (exact and approximate). Right: 1D IFFT versions for the two curves on the left.

2D sinc IFFT2 2D sinc

Figure 3: Left: 2D Fourier-domain image calculated by MATLAB’s built-in function. Right: 2D IFFT version for the image on the left.

2D Maclaurin IFFT2 2D Maclausin

Figure 4: Left: 2D Fourier-domain image formed by a truncated 2D Maclaurin series expansion. Right: 2D IFFT version for the image on the left.
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This 1D computer simulation demonstrates that the 50-term
truncated Maclaurin series expansion is pretty close to the sinc
function and that the discrete inverse Fourier transform can provide
a pretty close approximation in the spatial domain. In other words,
the “ifft” is not ill-conditioned.

A 2D Fourier transform pair is shown Figure 3, where the left
diagram is F (», v) in the 2D Fourier domain and the right diagram is
its 2D inverse Fourier transform in the spatial domain. The object
is the difference of two squares. The bigger square has a parameter
a =14 and intensity of 1. The smaller square has a parameter
a = 10 and intensity of 0.7. Thus, F(x, v) is the difference of two
2D sinc functions and is calculated using MATLAB’s built-in sine
function using discrete samples of u € [-15,1.5] and v € [-1.5, 1.5],
in a 128 x 128 regular grid. Taking MATLAB’s 2D inverse Fast
Fourier Transform ‘ifft2,” the left image r(u,») becomes the right
image f (x, ).

Figure 4 is almost the same as Figure 3, except that the Fourier
domain image on the left is a truncated version of the Taylor series
expansion (22) with a maximum value & being 50.

This 2D computer simulation demonstrates that the truncated
Maclaurin series expansion is pretty close to the 2D sinc function
and that the discrete 2D inverse Fourier transform can provide a
pretty close approximation in the spatial domain. In other words,
the “ifft2” is not ill-conditioned.

Discussion and Conclusions

In the spatial domain, the patient image f (x.¥) is a square-integrable
function with a finite support. Its 2D Fourier transform F(u, v)
is an entire function on the 2D complex plane. A Taylor series
expansion at (u,,,) converges everywhere in the complex Fourier
space. The function F(w, v) can be evaluated with this Taylor series
expansion anywhere in the complex Fourier space. The Taylor
series expansion coefficients only depend on the local values of
F(u,v) around (uo,vp). In other words, the spatial domain image
f(x,¥) can be reconstructed by the local information of F(u,v) in
the Fourier domain. When (u,, v,) = (0,0), the expansion is referred
to as the Maclaurin series expansion.

This paper assumes that the coefficients of the Taylor series
expansion can be somehow exactly measured and calculated by
a future hypothetical scanner. Then a truncated expansion can be
formed and used for image reconstruction.

This paper considers image reconstruction only from the
measurements of the object itself. Of course, prior information
about the object can be useful to supplement unmeasured data.
Machine learning is an excellent example of how prior information
can make image reconstruction possible when measurements are
incomplete. Some other prior information does not need neural
network training, such as using the total variation (TV) norm
minimization.

The robustness of the Taylor series expansion method is important
but is beyond the scope of this paper. The singular value
decomposition method has been used to study the ill-condition of
limited angle tomography [62].
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