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ABSTRACT

This study presents a comprehensive benchmark analysis of InheriNext®, a domain-specific, Al-powered tool designed
for phenotype-driven pathogenic variant prioritization. For this study, 7,244 whole exome test cases were generated
using phenotype and genotype data from Phenopackets, along with pools of variants from healthy individuals to
serve as genomic backgrounds. Performance was evaluated across diverse testing scenarios and compared against
four established tools. The results show InheriNext® achieving a 98.6% sensitivity in identifying pathogenic variants
and consistent performance across diverse tests for variant types, phenotype counts, and disease groups—supporting
the robustness and adaptability of its methodology. Sharing these benchmarking results and samples is intended
to drive progress by assisting clinicians and researchers in evaluating interpretation tools and identifying areas for

improvement.
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Introduction

Rare diseases, defined as conditions affecting fewer than 200,000
individuals in the United States or fewer than 1 in 2,000 people
in the European Union, still collectively impact over 400 million
people worldwide, highlighting a significant global health
challenge [1]. Many of these diseases, often caused by subtle
genetic mutations, go undiagnosed for extended periods. Accurate
identification of genetic variants is essential; however, with over
10 million genetic variations present in an average human genome,
effective prioritization becomes crucial. Advanced sequencing
technologies, such as Whole Exome Sequencing (WES) and
Whole Genome Sequencing (WGS), provide efficient methods
for profiling genetic data. Through these sequencing methods,
a patient's specific genetic variants are identified, followed by

prioritization based on the pathogenicity of the variants and the
phenotypes relevant to the patient [2]. Previous research has
highlighted the benefits of enhancing diagnostic accuracy by
integrating phenotype data into variant prioritization algorithms
[3,4]. However, there remains significant room for improvement.
For example, some consequences of genetic variants are difficult
to interpret, as their functional impacts may not correspond to their
actual pathogenicity.

Several current computational tools utilize clinical phenotype
data annotated with HPO terms to rank candidate genes based on
established phenotypic and genetic knowledge. Exomiser employs
a logistic regression model that integrates variant-based and gene-
based scores to generate a final prioritization score [5]. Variant-
based scores are influenced by allele frequency, variant type, and
pathogenicity predictions from tools. LIRICAL adopts a Bayesian
statistical framework to assess candidate diagnoses by computing
posterior probabilities based on likelihood ratios (LRs). It integrates
in silico pathogenicity predictions and phenotype-based LRs,
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refining genotype-disease associations and improving diagnostic
accuracy, particularly in rare disease contexts [6]. Xrare utilizes a
machine learning-based approach for prioritizing disease-causing
variants by integrating genetic data with phenotypic similarity
scores. By leveraging deep learning techniques, Xrare enhances
the identification of pathogenic variants and adapts to complex
genotype-phenotype relationships, making it a powerful tool for
clinical diagnostics [7]. AMELIE sets itself apart by leveraging
biomedical literature at scale, analyzing millions of PubMed
abstracts and full-text articles to support molecular diagnosis.
It employs a logistic regression classifier trained on simulated
patient data, allowing it to rank causative variants effectively.
By dynamically incorporating new scientific findings, AMELIE
improves variant interpretation in the evolving landscape of
genomic research [8].

InheriNext® is a domain-specific Al-powered tool for the
prioritization of genetic variants through two approaches: one
utilizes Human Phenotype Ontology (HPO)-based phenotyping [9]
and the other focuses on gene panels to identify causative SNPs and
INDELSs. It employs three scoring systems: phenotype-correlation
score, variant pathogenicity score, and disease-similarity score,
which aims to offer a more comprehensive framework for
analyzing the complexity and diversity of phenotypes.

To evaluate the performance of gene-ranking tools in identifying
causative variants, resources from the Global Alliance for
Genomics and Health (GA4GH) were adopted as the benchmarking
foundation. The GA4GH Phenopacket dataset is particularly well-
suited for benchmarking due to its standardized schema, rich
phenotypic detail, and expert-curated variant annotations, which
together ensure consistency and clinical relevance in evaluation.
By leveraging a widely accepted and biologically diverse dataset,
this study enables robust and reproducible comparisons across
gene- prioritization methods within realistic diagnostic scenarios.

In 2022, GA4GH introduced the Phenopacket Schema, an
ISO-approved standard designed to share detailed clinical and
genomic information at the individual level. A Phenopacket links
phenotypic features with disease diagnoses, patient data, and
genetic variants, thereby enabling the construction of accurate
disease models [10]. The GA4GH Phenopacket Store (v0.1.21)
provides a comprehensive benchmarking dataset comprising
of 7,830 Phenopacket samples covering 489 Mendelian and
chromosomal diseases linked to 432 genes and 4,263 unique
pathogenic alleles. Previous studies have demonstrated the utility
of GA4GH Phenopackets as a benchmark for assessing gene-
ranking methods [11].

In this study, the ranking performance of InheriNext® is compared
against other established diagnostic tools, with the evaluation
focusing on the identification of causative gene variants.

Materials and Methods
To benchmark different variant prioritization approaches, the
GA4GH Phenopackets were used to impute a dataset of simulated

genetic samples. Genomes from 600 healthy individuals were
obtained from the 1,000 Genomes Project, representing genetic
diversity across various populations. Considering the population
bottlenecks experienced by European, Asian, and American
populations—which drastically reduced genetic diversity in
these groups [12]—the below method was developed to generate
synthetic Whole Exome Sequencing (WES) samples.

Variants from a diverse selection of healthy individuals were
pooled to create a rich reservoir from which 50,000 variants were
randomly drawn to construct each simulated case of a “healthy”
(normal genetic variability) exome. This pooling strategy
ensured that the simulated exomes captured a broad spectrum
of genetic variability for analysis. Next, data from 7,244 of
7,830 Phenopacket samples that meet the analysis criteria (e.g.:
annotated with phenotypic features) were used. Each known
disease-causing variant was added into a synthetic healthy exome
along with patient’s phenotypic features to simulate a patient with
that genetically-driven disease or disorder (Figure 1).

This process resulted in 7,244 test cases representing disease
patients, with each synthesized sample containing annotated
phenotypic features, one pathogenic variant from Phenopacket,
and alongside 50,000 background variants. These samples were
finalized for further analysis and used to evaluate the ranking
performance of InheriNext® against four (4) other commonly
used variant prioritization tools (A-D).

PhenoPacket 1000 Genome
7830 Samples 600 WGS data

ac | pownsample

PhenoPacket 1000 Genome
7244 Samples 600 WES data
| Extact
1 disease 50,000
variant per healthy
Sample variants

Create synthetic patients

+ Patients’ recorded
phenotypic features

Pool of 7,244 synthetic
test patients

Compare InheriNext
to 4 alternatives

Figure 1: Workflow for generating simulated samples.

The diagram outlines the process for generating synthetic patients.
Six-hundred (600) healthy individuals’ background genomes
were extracted from the 1000 Genome Project, and the causative
variants sourced from Phenopacket. After filtering, 7,244 synthetic
samples, along with their respective phenotypic features, are
created for the following benchmark study.

The benchmark samples encompass nearly five hundred diseases.
Grouping similar diseases helps reveal their distribution for the
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Phenopacket, facilitating a better understanding and allowing for
performance analysis across different disease groups. Steps taken
to group diseases by K-means clustering using Term Frequency-
Inverse Document Frequency (TF-IDF) and Principal Component
Analysis (PCA) are described in supplementary data (Figure S1.,
Figure S2., Figure S3., and Table S1.).

Results and Discussions

Ranking Performance in Benchmark Samples

InheriNext® is benchmarked against four (4) different software
tools A-D (Exomiser, LIRICAL, Xrare, Amelie) that also utilize
phenotype-driven gene prioritization methods to rank candidate
pathogenic genes in the 7,244 samples. The "Top-10 Rate" is a
practical benchmark for evaluating tool performance, ensuring
that the causative gene is captured within the top ranks. It is often
visualized using the Cumulative Distribution Function (CDF)
plot, which displays the proportion of genes that fall below any
given rank. According to previous literature, this method offers
an intuitive way to assess and compare the effectiveness of
different tools in ranking causative genes [13]. Results show that
InheriNext® identified the causative gene within the Top-10 ranks
in 98.6% of cases. The corresponding Top-10 rates for tools A,
B, C, and D were 95.0%, 86.2%, 87.0%, and 90.9%, respectively
(Figure 2). The results indicate that InheriNext® achieved the
highest Top-10 capture rate in this benchmark comparison.

CDF of 7244 benchmark samples
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Figure 2: Performance evaluation of InheriNext® with other tools (A-D).
The cumulative distribution function (CDF) shows the ranking

distribution of causative genes across all five (5) tools. The CDF
plots illustrate the percentage of the samples with causative genes

ranked within the topN by each tool. N could be any integer
between 1 and 10. Each tool is represented by a different color.

Ranking Performance in Different Variant Consequences
Variant consequences are pivotal in identifying pathogenic
variants, which play a crucial role in diagnosing genetic disorders.
The Sequence Ontology (SO) offers standardized annotations to
describe the effects of genetic variants on biological sequences,
helping categorize their impact on genes, transcripts, and other
features to understand their functional implications (Table S2).
This knowledge enables clinicians to pinpoint the genetic basis
of a disease accurately, facilitating more precise diagnostics. By
assessing the functional impact of these variants, one can evaluate
the causative genes more precisely in algorithmic calculations.
An analysis of the distribution of variant consequences in the
benchmarked samples was conducted, revealing 24 distinct types
of variant consequences. In some cases, a variant exhibits multiple
types of consequences, resulting in duplicated counts. Table 1A
indicates that the three (3) most common types of consequences
are missense, comprising 49.05% of the total, stop gained at
12.34%, and frameshift truncation accounting for 9.10%. The
subsequent evaluation uses the Top-10 rate to assess each tool’s
performances in identifying causative genes across different
variant consequences (refer to Table1B). InheriNext® achieved
the highest Top-10 capture rates for the most frequent, therefore
relevant, consequence types (missense variant, stop gained, and
frameshift truncation). However, InheriNext® falls short in the
synonymous variant category, achieving only a 30.43% in the
Top-10 rankings.

Table 1: Distribution of Variant Consequences in Benchmark Samples.
(A) The descending proportion and counts of 24 variant consequences
identified in benchmark samples. (B) The breakdown of variant
consequences by the five (5) tools. The percentages reflect the ability
of each tool to rank causative genes within their Top- 10s for each
consequence.

(A)

Consequences Proportion % (count)
Missense variant 49.05 (4345)
Stop gained 12.34 (1093)
Frameshift truncation 9.10 (806)
Coding transcript intron variant 6.48 (574)
Frameshift variant 4.96 (439)
Splice region variant 4.00 (354)
Splice donor variant 3.04 (269)
Frameshift elongation 2.34 (207)
Splice acceptor variant 1.96 (174)
Disruptive inframe deletion 1.51 (134)
Complex substitution 1.12 (99)
Inframe deletion 0.98 (87)

5 prime UTR exon variant 0.72 (64)
Feature truncation 0.58 (51)
Start lost 0.52 (46)
Multi-nucleotide variant 0.33 (29)
Direct tandem duplication 0.26 (23)
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Synonymous variant 0.26 (23)

Disruptive inframe insertion 0.25 (22)

3 prime UTR intron variant 0.07 (6)

5 prime UTR intron variant 0.06 (5)

Stop lost 0.03 (3)

Inframe insertion 0.03 (3)

Exon loss variant 0.03 (3)

(B)

Missense variant 98.64 93.9 87.59 89.07 94.38
Stop gained 9997 97.8 86.55 86.18 91.49
Frameshift truncation 99.38 98.39 9144 [89.33 93.05
S;?;E% franseriptintron g g 9355 (7422 (8188 75.44
Frameshift variant 98.86 96.58 81.09 |83.83 87.24
Splice region variant 94.63 9435 7627 8559 66.67
Splice donor variant 99.63 98.51 86.99 86.25 95.54
Frameshift elongation 98.55 100 92.27 19227 96.62
Splice acceptor variant 99.43 9425 86.21 |83.33 91.38
Disruptive inframe deletion  99.25 98.51 94.03 (96.27 96.27
Complex substitution 100 100 93.94 19495 9798
Inframe deletion 98.85 96.55 8391 8391 81.61
5 prime UTR exon variant ~ 85.94 82.81 1.56 |3.12 3.12
Feature truncation 100 100 100 98.04 98.04
Start lost 100 8478 97.83 913 100
Multi-nucleotide variant 100 86.21 6897 82.76 82.76
Direct tandem duplication 100 86.96 7391 95.65 86.96
Synonymous variant 30.43 60.87 43.48 |78.26 21.74
Disruptive inframe insertion 100 86.36 68.18 9545 86.36
3 prime UTR intron variant 100 100 100 100 100

5 prime UTR intron variant | 100 60 100 100 100
Stop lost 100 100 33.33 100 100
Inframe insertion 100 100 100 100 100
Exon loss variant 100 100 100 100 100

Assessment of Diverse Annotated Phenotype Counts

Phenotypic features, as annotated in the Phenopacket schema,
describe clinical symptoms in patients and are used to illustrate
the similarity between disease- associated features and those
present in a patient. InheriNext® integrates the HPO project [9],
which provides an ontology of medically relevant phenotypic
features and disease-phenotype annotations, to calculate the
likelihood of diseases based on the phenotypic features observed
in patients. For example, "arachnodactyly" is a relevant feature
for "Marfan syndrome" in HPO database, so if a patient exhibits
"arachnodactyly," they are more likely to have the disease.
InheriNext® and other tools use phenotype-driven methods to
rank potential pathogenic genes based on phenotypic features
in addition to patient genotype data. In the benchmark samples,
diverse annotated phenotype counts are inputted for each sample
based on phenotypic features in the Phenopacket record used to
create that particular simulated case. However, a large count might
decrease the performance in ranking causative genes because it may
include more unrelated (noise) features, which are not annotated
in the disease. For phenotype counts distribution, the results
show that: the range of 6-10 phenotypes is most common, seen
in 1821 samples, followed closely by the 21-50 range with 1737

samples (Figure 3A). The number of phenotype inputs across each
tool’s Top-10s were evaluated to assess performance. The results
show that InheriNext® demonstrates consistent performance
with percentages ranging from 98% to 100%, indicating strong
capability across all phenotype input ranges. Tool A maintains high
percentages, reaching 97% in the 6-10 and 11-15 ranges, but drops
to 82% in the >50 category. Tool B, Tool C, and Tool D remain
steady with over 82% in most ranges; however, they experience a
more significant drop in the >50 category (Figure 3B).

Evaluation of Ranking Performance in Four Disease Groups
Each benchmark sample is annotated with a specific disease.
However, some diseases do not match a specific MONDO ID
and are therefore removed, leaving 7215 samples for analysis.
The Phenopacket-annotated diseases were mapped to second-
layer categories from MONDO ontologies (Figure S1) to generate
a word matrix for TF-IDF similarity calculation (Figure S2 A).
The optimal number of clusters for the Phenopacket diseases
was determined using k-means clustering with the elbow method
applied to the word matrix. This analysis classified the diseases
into four major groups, as shown in Figure. S3. To enhance
interpretability, these four groups were subsequently renamed
with more representative titles, as detailed in Table S1 B.

The scatter plot below displays the distribution of different
diseases across four major disease groups, with each data point
symbolizing a distinct disease. The size of each point reflects the
number of samples for that disease. As reflected by the dense
cluster of orange points, this plot clearly shows that the Nervous
System and Metabolic System Disorder group has the highest
number of samples (Figure 4A). A table is presented that lists
examples of actual diseases found in the benchmark samples
grouped in four major disease categories (Figure 4B). To evaluate
ranking performance, the Top-10 rate was used as an indicator
across four disease groups. The results show that InheriNext®
consistently ranks over 98% of samples' causative genes within
the Top-10, demonstrating non-discriminatory performance across
major disease groups.

In comparison, other tools show variability based on the disease
type. For example, Tool B performs well in the Cancer or Benign
Tumor category but less effectively in the Nervous or Metabolic
Disorder group (Figure 4C).

(Note: Disease group names were abbreviated slightly while

keeping key terms for clarity and consistency:

1. Development or morphogenesis disorder, musculoskeletal
system disorder = Development or musculoskeletal disorder

2. Nervous system and metabolic system disorder = Nervous or

metabolic disorder

Cancer or benign tumor = Cancer or benign tumor

Visual system, orbital region disorder = Visual, orbital region

disorder)

o

Benchmarking tests for InheriNext® showed some key performance
strengths, which could be attributed to the following factors:
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Figure 3: Distribution of Phenotypes Counts in Benchmark Samples. (A) The bar graph illustrates the distribution of samples with different ranges
of annotated phenotypic feature counts. Each bar's height represents the sample count within a specific range. (B) The five bar charts represent the
performance of different tools— InheriNext®, Tool A, Tool B, Tool C, and Tool D—across various feature count ranges. Each chart shows the
percentage of samples’ causative genes successfully ranked within the Top-10 for each phenotypic feature count range.
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Diseases distribution in benchmark samples
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Figure 4: Disease Distribution in Benchmark. (A) The scatter plot illustrates the distribution of diseases by condensing complex data into two principal
components (Principal Component #1 and Principal Component #2), highlighting similarities and clustering in four disease groups among the samples.
Each point represents a unique disease, and the size indicates the number of samples for that disease; larger points signify a greater number of samples.
(B) Example of actual diseases observed in the benchmark samples across four disease groups. (C) The performance comparison across the five tools
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shows the percentage of samples' causative genes in Top-10 distributed among the four groups of diseases (abbreviated).
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(1) Integration of Disease Similarity Score Enhances InheriNext®
Ranking Performance:

InheriNext® incorporates clinician feedback to refine the
prioritization of pathogenic genes. One such enhancement was
prompted by a request to improve the assessment of similarity
between disease symptoms and patient phenotypes, leading to the
integration of a disease similarity score. This feature contributes to
stable ranking performance across a variety of disease conditions
(Figure 4C). By aligning more closely with clinical realities, this
integration supports more accurate and relevant predictions.

(2) Delay Filtering and Removal of Candidates Until After
Prioritization:

InheriNext® evaluates all potential causative variants and genes,
including those with a lower initial likelihood of pathogenicity,
to account for their possible clinical relevance. In contrast, other
tools may apply early variant consequence filters—for example,
excluding 5" UTR exon variants—which may result in the removal
of relevant pathogenic candidates (Table 1B: 5" UTR exon variant,
Tools B-D). InheriNext® retains all candidates through the
prioritization stage, enabling more consistent ranking performance
across variant types and supporting the identification of atypical or
rare variants.

Despite overall strong performance, several challenges remain.
These include limitations in the classification of variants of
uncertain significance (VUS) in ClinVar, the underestimation
of certain high-allele-frequency variants' pathogenicity, and
ambiguous functional consequences of specific variants.
Benchmarking also identified reduced performance in a subset of
samples. Further analysis identified two

(2) primary contributors, offering clear targets for future refinement:
(1) Variants Annotated with Synonymous Consequence Did Not
Rank Well (Table 1B):

In its initial implementation, InheriNext® excluded synonymous
variants from ranking due to their typically neutral effect relative
to non-synonymous variants. This exclusion was intended to
streamline prioritization by focusing on more likely pathogenic
candidates. However, this approach led to the omission of clinically
relevant variants, counter to the broader goal of comprehensive
evaluation (see “Delay Filtering and Removal of Candidates
Until After Prioritization”). Recent studies have shown that
some synonymous variants may have functional consequences,
such as impacting splicing motifs or cryptic splice sites, altering
microRNA binding [14], and affecting mRNA structure or protein
expression via reduced codon optimality [15-17]. In response,
InheriNext® has begun to incorporate synonymous variants into
the ranking process to improve sensitivity and better reflect their
potential clinical relevance.

(2) High Allele Frequency of the Variants Affect Ranking:

The ClinGen Sequence Variant Interpretation Working Group
has refined the ACMG/AMP variant pathogenicity guidelines for
rule BA1, which designates variants with a minor allele frequency
(MAF) > 0.05 as benign. However, they identified nine (9) variants

with MAF > 0.05 that may exhibit pathogenicity. These findings
suggest that MAF and pathogenicity do not always correlate. As
a result, InheriNext® algorithm may inadvertently penalize genes
based on the high allele frequency and affect the ranking accuracy.
While high-frequency variants are typically deemed benign, some
may still possess pathogenic potential, emphasizing the need to
evaluate additional factors when assessing variant pathogenicity.
Future optimizations will incorporate additional criteria for
adjusting gene scores. The intention is to retain the variant
frequency filter as recommended by ACMG/AMP guidelines [18].
However, specific exceptions are systematically reviewed and
curated as they appear in the clinical genetics literature, allowing
potentially pathogenic variants to be considered despite their
relatively high frequency.

Conclusion

The benchmarking analysis demonstrates that InheriNext®
reliably prioritizes candidate pathogenic genes under varied testing
scenarios among the tools assessed. In evaluations of phenotype-
driven gene prioritization methods, InheriNext® achieved the
highest Top-10 capture rate at 98.6% and the lowest missed rate,
reflecting high sensitivity. This result is supported by consistent
performance across various variant consequences, particularly the
most common types—missense variants, stop gains, and frameshift
truncations—although some limitations were noted (and addressed)
with synonymous variants. Additional tests demonstrate that it
maintained ranking accuracy as phenotype complexity increased
and across different disease groups, indicating its adaptability
across different clinical contexts.

Taken together, these findings suggest that InheriNext® is a
reliable tool for gene prioritization, with effective integration of
genomic and phenotypic data. Its performance across multiple
testing dimensions supports its potential utility to assist in genetic
diagnostics and research applications.
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Supplementary Materials

K-means Clustering Diseases Using Term Frequency-inverse Document Frequency (TF-IDF) and Principal Component Analysis
(PCA)

(1) Building Ontology Structure:

MONDO ontologies are used to standardize disease terminology within a unified framework to establish initial relationships and
processes specific MONDO for analysis [1]. The diagram below shows a simplified version of the MONDO ontology (Figure S1). At
the root is "Disease" highlighted in the red box. Following it is "human disease", which branches into several second-layer categories,
such as "cardiovascular disorder", "acute disease", "cancer or benign tumor", and "disorder of development or morphogenesis". In
MONDO system, these second-layer categories composition terms are broken down into individual words for calculating similarity
between diseases.

Root
Disease

Human Disease

Second-layer category
disease disorder

Acute Heart
bronchiolitis Disorder

Disorder of
development or
morphogenesis

Cancer or
benign tumor

Holt-Oram
syndrome

Figure S1: The simplified ontology hierarchical structure of diseases in the MONDO System. This diagram represents a portion of the
MONDO disease ontology, illustrating the hierarchical relationships among various diseases. The "Root" node at the center is labeled
"Disease," from which several branches extend to different disease categories and sub-categories.

(2) Text Processing and Term Frequency-Inverse Document Frequency (TF-IDF) Calculation:

In the Phenopacket-annotated diseases, there are 28 unique second-layer categories from MONDO ontologies. These second-layer
categories composition terms are broken down into individual words, with stopwords such as "the", "is", "that" removed, and assembled
into a word matrix (Figure S2 A). Each Phenopacket disease's corresponding second-layer categories are then represented by a set of
word vectors, which are converted into TF-IDF vectors for subsequent similarity analysis [2]. The dendrogram was used to interpret
how disease terms cluster together based on their TF-IDF similarity scores. In F Figure. S2 B, a lower linkage height indicates greater
similarity between terms. For example, if two disease terms are joined at a low height, they share a high degree of textual similarity
based on their TF-IDF scores. In this analysis, the dendrogram visually represents the hierarchical relationships between disease terms,
with the height reflecting their TF-IDF-based distances. It effectively highlights these distances, helping to distinguish closely related
disease terms from more distinct ones. Furthermore, dendrograms rely on the ultrametric tree assumption, which rarely holds in real-
world text analysis, and may lead to misleading representations of term similarities. To overcome these challenges, Principal component
analysis (PCA) and k-means clustering were adopted for disease term classification. PCA reduces the dimensionality of TF-IDF vectors
while preserving key features, improving visualization and interpretability. K-means, on the other hand, provides a scalable and flexible
clustering approach that determines a specific number of groups, allowing for further evaluation and analysis of these disease clusters.
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B
Figure S2: The ontology hierarchical relationship among diseases in the dendrogram based on TF-IDF similarity from a word matrix. (A) A word
matrix generated from 28 unique second-layer disease categories, with category names tokenized into individual terms after removing common stop
words. (B) The dendrogram illustrates the hierarchical clustering of disease terms based on TF-IDF similarity, where lower linkage heights indicate
greater textual similarity. As the hierarchy builds upward, the structure may become less precise in reflecting actual semantic distances.

(3) Principal Component Analysis (PCA) and K-means Clustering:

To present the results more intuitively, PCA was applied to reduce dimensionality and capture the most significant differences in the
TF-IDF vectors of Phenopacket diseases [3]. This reduction process enabled visualization in a 2D plot. After applying PCA, k-means
clustering was used to group the diseases based on these reduced dimensions. K-means clustering is an unsupervised learning algorithm
used for grouping unlabeled data points into distinct clusters [4]. To effectively apply k-means, the elbow method [5] was used to
determine the optimal number of clusters. The optimal K was identified at the point where Within-Cluster Sum of Squares (WCSS) stops
decreasing sharply, indicating a balance between cluster compactness and flexibility. The results showed that when K=4, SSE exhibited
a steep decline before leveling off, suggesting that four clusters provided the most effective grouping without overfitting or unnecessary
complexity (Figure S3).

Elbow Method for Optimal K

A
000 |
w
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£
20000 4
D000 -
O
1 z 1 M 5 s 7

Muamiber of chavters

Figure S3: The Elbow Method for determining the optimal number of clusters. K values from one to seven were tested, using WCSS as a
performance metric. The plot showed a sharp decline in WCSS when K = 4; beyond this point, adding more clusters did not significantly
improve clustering performance, as the rate of WCSS decrease slowed down.

(4) Defining Representative Disease Terms Across Four Clusters:

After categorizing the diseases into four groups, the top two highest-frequency terms in each group were selected as representative
names by Mondo ontology second-layer disease terms, providing a clearer and more direct overview of diseases in benchmark. When
choosing a representative name, the International Classification of Diseases (ICD) was considered, as it offers a comprehensive disease
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classification system that typically includes standardized disease names [6]. Although syndromic disease is a recognized classification
in the MONDO ontology system—referring to disorders that affect multiple organ systems—it cannot be classified under ICD-11 (Table
S1 A). Due to its lack of specificity and limited representative power for precise disease grouping, syndromic disease was excluded to
enable a clearer understanding of the disease categories. Note that only the terms within each cluster observed in the benchmark are
presented in Table S1 A. Finally, representative names were selected from the top two most frequent terms within each cluster to define
a more informative and meaningful disease label (Table S1 B).

Table S1: Top Two High-Frequency Terms in Each Cluster Defining the Representative Disease Group Name. (A) ICD-11 is considered for selecting
the representative disease term. (B) In the MONDO ontology system, 28 unique second- layer terms are used to classify disease groups, providing a
structured hierarchy for disease representation. The table presents the top two highest-frequency terms from each of the four clusters, which will be
considered in defining a representative disease term.

A

Mondo disease terms
ICD-11 for Disease Classifications System
(second layer)

01 Certain infectious or parasitic diseases
02 Neoplasms cancer or benign tumor
03 Diseases of the blood or blood-forming organs

04 Diseases of the immune system
05 Endocrine, nutritional or metabolic diseases

06 Mental, behavioural or neurodevelopmental disorders disorder of development or morphogenesis

07 Sleep-wake disorders

08 Diseases of the nervous system nervous system disorder

09 Diseases of the visual system disorder of orbital region disorder of visual system

10 Diseases of the ear or mastoid process

11 Diseases of the circulatory system

12 Diseases of the respiratory system
13 Diseases of the digestive system
14 Diseases of the skin

15 Diseases of the musculoskeletal system or connective tissue musculoskeletal system disorder
16 Diseases of the genitourinary system

17 Conditions related to sexual health

18 Pregnancy, childbirth or the puerperium

19 Certain conditions originating in the perinatal period

20 Developmental anomalies

21 Symptoms, signs or clinical findings, not elsewhere classified

22 Injury, poisoning or certain other consequences of external causes
23 External causes of morbidity or mortality

24 Factors influencing health status or contact with health services
25 Codes for special purposes

26 Supplementary Chapter Traditional Medicine Conditions

B
Mondo disease terms Term Representative Disease
Clusters . .
(second layer) frequency Classification
disorder of orbital region 357 Visual system, orbital
Class 0 . . ; :
disorder of visual system 357 region disorder
i 474
Class 1 caneet Oli ber.ngn tumor ! Cancer or benign tumor
syndromic disease 474
tem disord 2254 . .
Class 2 flervous .sys.em 1soreer Nervous system and metabolic system disorder
metabolic disease 696
disorder of development or morphogenesis 2035 o
T Development or morphogenesis disorder,
Class 3 syndromic disease 1925 .
- musculoskeletal system disorder
musculoskeletal system disorder 1185
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Table S2: Variant Consequence Annotations in the Sequence Ontology. This table illustrates the standardized annotations provided by the Sequence
Ontology to describe the consequences of genetic variants on biological sequences. The columns include the SO ID, the corresponding SO term, and
the description of each term. Only the consequences observed in the benchmark samples are presented in this figure.

SO Term SO ID Description

Missense variant S0:0001583 A sequence variant, that changés one or more bases, resulting in a different amino acid
sequence but where the length is preserved.

St il S0:0001587 A sequence variant Whereby at least one base of a codgn is changed, resulting in a
premature stop codon, leading to a shortened polypeptide.

Frameshift truncation S0:0001910 A frameshift variant that causes the translational reading frame to be shortened relative to
the reference feature.

Coding transcript intron variant S0O:0001969 A transcript variant occurring within an intron of a coding transcript.

. . ) A sequence variant which causes a disruption of the translational reading frame, because
Frameshift variant ROATIITSE the number of nucleotides inserted or deleted is not a multiple of three.
. . . ) A sequence variant in which a change has occurred within the region of the splice site,

Splice region variant S0:0001630 either within 1-3 bases of the exon or 3-8 bases of the intron.

Splice donor variant S0:0001575 A splice variant that changes the 2 base pair region at the 5' end of an intron.

Mgt ozt S0:0001909 A frameshift variant that causes the translational reading frame to be shortened relative to
the reference feature.

Splice acceptor variant S0:0001574 A splice variant that changes the 2 base pair region at the 5' end of an intron.

Tt e @bleton SO:0001826 Ap 1pframe (.legrease in cds length that deletes bases from the coding sequence starting
within an existing codon.
When no simple or well defined DNA mutation event describes the observed DNA

Complex substitution S0:1000005 change, the keyword \"complex\" should be used. Usually there are multiple equally
plausible explanations for the change.

Inframe deletion S0:0001822 An inframe non synonymous variant that deletes bases from the coding sequence.

5 prime UTR exon variant S0:0002092 A UTR variant of exonic sequence of the S'UTR.

Feature truncation S0:0001906 A sequence variant that causes the reduction of a genomic feature, with regard to the
reference sequence.

Start lost S0:0002012 A codon variant that changes at least one base of the canonical start codon.

MNV SO:0002007 An MNV is a multiple nucleotide variant (substitution) in which the inserted sequence is
the same length as the replaced sequence.

Direct tandem duplication S0:1000039 A tandem duplication where the individual regions are in the same orientation.

Synonymous variant S0O:0001819 A sequence variant where there is no resulting change to the encoded amino acid.

I A Anerion SO:0001824 An inframe increase in c.ds length that inserts one or more codons into the coding
sequence within an existing codon.

3 prime UTR intron variant S0:0002090 A UTR variant of intronic sequence of the 3' UTR.

5 prime UTR intron variant S0:0002091 A UTR variant of intronic sequence of the 5' UTR.

Stioo T S0:0001578 A sequence variant where at least one base of the terminator codon (stop) is changed,
resulting in an elongated transcript.

Inframe insertion S0O:0001821 An inframe non synonymous variant that inserts bases into in the coding sequence.

Exon loss variant S0O:0001572 A sequence variant whereby an exon is lost from the transcript.
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