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ABSTRACT
This study presents a comprehensive benchmark analysis of InheriNext®, a domain-specific, AI-powered tool designed 
for phenotype-driven pathogenic variant prioritization. For this study, 7,244 whole exome test cases were generated 
using phenotype and genotype data from Phenopackets, along with pools of variants from healthy individuals to 
serve as genomic backgrounds. Performance was evaluated across diverse testing scenarios and compared against 
four established tools. The results show InheriNext® achieving a 98.6% sensitivity in identifying pathogenic variants 
and consistent performance across diverse tests for variant types, phenotype counts, and disease groups—supporting 
the robustness and adaptability of its methodology. Sharing these benchmarking results and samples is intended 
to drive progress by assisting clinicians and researchers in evaluating interpretation tools and identifying areas for 
improvement.
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Introduction
Rare diseases, defined as conditions affecting fewer than 200,000 
individuals in the United States or fewer than 1 in 2,000 people 
in the European Union, still collectively impact over 400 million 
people worldwide, highlighting a significant global health 
challenge [1]. Many of these diseases, often caused by subtle 
genetic mutations, go undiagnosed for extended periods. Accurate 
identification of genetic variants is essential; however, with over 
10 million genetic variations present in an average human genome, 
effective prioritization becomes crucial. Advanced sequencing 
technologies, such as Whole Exome Sequencing (WES) and 
Whole Genome Sequencing (WGS), provide efficient methods 
for profiling genetic data. Through these sequencing methods, 
a patient's specific genetic variants are identified, followed by 

prioritization based on the pathogenicity of the variants and the 
phenotypes relevant to the patient [2]. Previous research has 
highlighted the benefits of enhancing diagnostic accuracy by 
integrating phenotype data into variant prioritization algorithms 
[3,4]. However, there remains significant room for improvement. 
For example, some consequences of genetic variants are difficult 
to interpret, as their functional impacts may not correspond to their 
actual pathogenicity.

Several current computational tools utilize clinical phenotype 
data annotated with HPO terms to rank candidate genes based on 
established phenotypic and genetic knowledge. Exomiser employs 
a logistic regression model that integrates variant-based and gene-
based scores to generate a final prioritization score [5]. Variant-
based scores are influenced by allele frequency, variant type, and 
pathogenicity predictions from tools. LIRICAL adopts a Bayesian 
statistical framework to assess candidate diagnoses by computing 
posterior probabilities based on likelihood ratios (LRs). It integrates 
in silico pathogenicity predictions and phenotype-based LRs, 
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refining genotype-disease associations and improving diagnostic 
accuracy, particularly in rare disease contexts [6]. Xrare utilizes a 
machine learning-based approach for prioritizing disease-causing 
variants by integrating genetic data with phenotypic similarity 
scores. By leveraging deep learning techniques, Xrare enhances 
the identification of pathogenic variants and adapts to complex 
genotype-phenotype relationships, making it a powerful tool for 
clinical diagnostics [7]. AMELIE sets itself apart by leveraging 
biomedical literature at scale, analyzing millions of PubMed 
abstracts and full-text articles to support molecular diagnosis. 
It employs a logistic regression classifier trained on simulated 
patient data, allowing it to rank causative variants effectively. 
By dynamically incorporating new scientific findings, AMELIE 
improves variant interpretation in the evolving landscape of 
genomic research [8].

InheriNext® is a domain-specific AI-powered tool for the 
prioritization of genetic variants through two approaches: one 
utilizes Human Phenotype Ontology (HPO)-based phenotyping [9] 
and the other focuses on gene panels to identify causative SNPs and 
INDELs. It employs three scoring systems: phenotype-correlation 
score, variant pathogenicity score, and disease-similarity score, 
which aims to offer a more comprehensive framework for 
analyzing the complexity and diversity of phenotypes.

To evaluate the performance of gene-ranking tools in identifying 
causative variants, resources from the Global Alliance for 
Genomics and Health (GA4GH) were adopted as the benchmarking 
foundation. The GA4GH Phenopacket dataset is particularly well-
suited for benchmarking due to its standardized schema, rich 
phenotypic detail, and expert-curated variant annotations, which 
together ensure consistency and clinical relevance in evaluation. 
By leveraging a widely accepted and biologically diverse dataset, 
this study enables robust and reproducible comparisons across 
gene- prioritization methods within realistic diagnostic scenarios.

In 2022, GA4GH introduced the Phenopacket Schema, an 
ISO-approved standard designed to share detailed clinical and 
genomic information at the individual level. A Phenopacket links 
phenotypic features with disease diagnoses, patient data, and 
genetic variants, thereby enabling the construction of accurate 
disease models [10]. The GA4GH Phenopacket Store (v0.1.21) 
provides a comprehensive benchmarking dataset comprising 
of 7,830 Phenopacket samples covering 489 Mendelian and 
chromosomal diseases linked to 432 genes and 4,263 unique 
pathogenic alleles. Previous studies have demonstrated the utility 
of GA4GH Phenopackets as a benchmark for assessing gene-
ranking methods [11].

In this study, the ranking performance of InheriNext® is compared 
against other established diagnostic tools, with the evaluation 
focusing on the identification of causative gene variants.

Materials and Methods
To benchmark different variant prioritization approaches, the 
GA4GH Phenopackets were used to impute a dataset of simulated 

genetic samples. Genomes from 600 healthy individuals were 
obtained from the 1,000 Genomes Project, representing genetic 
diversity across various populations. Considering the population 
bottlenecks experienced by European, Asian, and American 
populations—which drastically reduced genetic diversity in 
these groups [12]—the below method was developed to generate 
synthetic Whole Exome Sequencing (WES) samples.

Variants from a diverse selection of healthy individuals were 
pooled to create a rich reservoir from which 50,000 variants were 
randomly drawn to construct each simulated case of a “healthy” 
(normal genetic variability) exome. This pooling strategy 
ensured that the simulated exomes captured a broad spectrum 
of genetic variability for analysis. Next, data from 7,244 of 
7,830 Phenopacket samples that meet the analysis criteria (e.g.: 
annotated with phenotypic features) were used. Each known 
disease-causing variant was added into a synthetic healthy exome 
along with patient’s phenotypic features to simulate a patient with 
that genetically-driven disease or disorder (Figure 1).

This process resulted in 7,244 test cases representing disease 
patients, with each synthesized sample containing annotated 
phenotypic features, one pathogenic variant from Phenopacket, 
and alongside 50,000 background variants. These samples were 
finalized for further analysis and used to evaluate the ranking 
performance of InheriNext® against four (4) other commonly 
used variant prioritization tools (A-D).

Figure 1: Workflow for generating simulated samples.

The diagram outlines the process for generating synthetic patients. 
Six-hundred (600) healthy individuals’ background genomes 
were extracted from the 1000 Genome Project, and the causative 
variants sourced from Phenopacket. After filtering, 7,244 synthetic 
samples, along with their respective phenotypic features, are 
created for the following benchmark study.

The benchmark samples encompass nearly five hundred diseases. 
Grouping similar diseases helps reveal their distribution for the 
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Phenopacket, facilitating a better understanding and allowing for 
performance analysis across different disease groups. Steps taken 
to group diseases by K-means clustering using Term Frequency-
Inverse Document Frequency (TF-IDF) and Principal Component 
Analysis (PCA) are described in supplementary data (Figure S1., 
Figure S2., Figure S3., and Table S1.).

Results and Discussions
Ranking Performance in Benchmark Samples
InheriNext® is benchmarked against four (4) different software 
tools A-D (Exomiser, LIRICAL, Xrare, Amelie) that also utilize 
phenotype-driven gene prioritization methods to rank candidate 
pathogenic genes in the 7,244 samples. The "Top-10 Rate" is a 
practical benchmark for evaluating tool performance, ensuring 
that the causative gene is captured within the top ranks. It is often 
visualized using the Cumulative Distribution Function (CDF) 
plot, which displays the proportion of genes that fall below any 
given rank. According to previous literature, this method offers 
an intuitive way to assess and compare the effectiveness of 
different tools in ranking causative genes [13]. Results show that 
InheriNext® identified the causative gene within the Top-10 ranks 
in 98.6% of cases. The corresponding Top-10 rates for tools A, 
B, C, and D were 95.0%, 86.2%, 87.0%, and 90.9%, respectively 
(Figure 2). The results indicate that InheriNext® achieved the 
highest Top-10 capture rate in this benchmark comparison.

Figure 2: Performance evaluation of InheriNext® with other tools (A-D). 

The cumulative distribution function (CDF) shows the ranking 
distribution of causative genes across all five (5) tools. The CDF 
plots illustrate the percentage of the samples with causative genes 

ranked within the topN by each tool. N could be any integer 
between 1 and 10. Each tool is represented by a different color.

Ranking Performance in Different Variant Consequences
Variant consequences are pivotal in identifying pathogenic 
variants, which play a crucial role in diagnosing genetic disorders. 
The Sequence Ontology (SO) offers standardized annotations to 
describe the effects of genetic variants on biological sequences, 
helping categorize their impact on genes, transcripts, and other 
features to understand their functional implications (Table S2). 
This knowledge enables clinicians to pinpoint the genetic basis 
of a disease accurately, facilitating more precise diagnostics. By 
assessing the functional impact of these variants, one can evaluate 
the causative genes more precisely in algorithmic calculations. 
An analysis of the distribution of variant consequences in the 
benchmarked samples was conducted, revealing 24 distinct types 
of variant consequences. In some cases, a variant exhibits multiple 
types of consequences, resulting in duplicated counts. Table 1A 
indicates that the three (3) most common types of consequences 
are missense, comprising 49.05% of the total, stop gained at 
12.34%, and frameshift truncation accounting for 9.10%. The 
subsequent evaluation uses the Top-10 rate to assess each tool’s 
performances in identifying causative genes across different 
variant consequences (refer to Table1B). InheriNext® achieved 
the highest Top-10 capture rates for the most frequent, therefore 
relevant, consequence types (missense variant, stop gained, and 
frameshift truncation). However, InheriNext® falls short in the 
synonymous variant category, achieving only a 30.43% in the 
Top-10 rankings.

Table 1: Distribution of Variant Consequences in Benchmark Samples. 
(A) The descending proportion and counts of 24 variant consequences 
identified in benchmark samples. (B) The breakdown of variant 
consequences by the five (5) tools. The percentages reflect the ability 
of each tool to rank causative genes within their Top- 10s for each 
consequence.
(A)
Consequences Proportion % (count)
Missense variant 49.05 (4345)
Stop gained 12.34 (1093)
Frameshift truncation 9.10 (806)
Coding transcript intron variant 6.48 (574)
Frameshift variant 4.96 (439)
Splice region variant 4.00 (354)
Splice donor variant 3.04 (269)
Frameshift elongation 2.34 (207)
Splice acceptor variant 1.96 (174)
Disruptive inframe deletion 1.51 (134)
Complex substitution 1.12 (99)
Inframe deletion 0.98 (87)
5 prime UTR exon variant 0.72 (64)
Feature truncation 0.58 (51)
Start lost 0.52 (46)
Multi-nucleotide variant 0.33 (29)
Direct tandem duplication 0.26 (23)
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Synonymous variant 0.26 (23)
Disruptive inframe insertion 0.25 (22)
3 prime UTR intron variant 0.07 (6)
5 prime UTR intron variant 0.06 (5)
Stop lost 0.03 (3)
Inframe insertion 0.03 (3)
Exon loss variant 0.03 (3)

(B)
Consequences InheriNext® Tool A Tool B Tool C Tool D
Missense variant 98.64 93.9 87.59 89.07 94.38
Stop gained 99.27 97.8 86.55 86.18 91.49
Frameshift truncation 99.38 98.39 91.44 89.33 93.05
Coding transcript intron 
variant 98.08 93.55 74.22 81.88 75.44

Frameshift variant 98.86 96.58 81.09 83.83 87.24
Splice region variant 94.63 94.35 76.27 85.59 66.67
Splice donor variant 99.63 98.51 86.99 86.25 95.54
Frameshift elongation 98.55 100 92.27 92.27 96.62
Splice acceptor variant 99.43 94.25 86.21 83.33 91.38
Disruptive inframe deletion 99.25 98.51 94.03 96.27 96.27
Complex substitution 100 100 93.94 94.95 97.98
Inframe deletion 98.85 96.55 83.91 83.91 81.61
5 prime UTR exon variant 85.94 82.81 1.56 3.12 3.12
Feature truncation 100 100 100 98.04 98.04
Start lost 100 84.78 97.83 91.3 100
Multi-nucleotide variant 100 86.21 68.97 82.76 82.76
Direct tandem duplication 100 86.96 73.91 95.65 86.96
Synonymous variant 30.43 60.87 43.48 78.26 21.74
Disruptive inframe insertion 100 86.36 68.18 95.45 86.36
3 prime UTR intron variant 100 100 100 100 100
5 prime UTR intron variant 100 60 100 100 100
Stop lost 100 100 33.33 100 100
Inframe insertion 100 100 100 100 100
Exon loss variant 100 100 100 100 100

Assessment of Diverse Annotated Phenotype Counts
Phenotypic features, as annotated in the Phenopacket schema, 
describe clinical symptoms in patients and are used to illustrate 
the similarity between disease- associated features and those 
present in a patient. InheriNext® integrates the HPO project [9], 
which provides an ontology of medically relevant phenotypic 
features and disease-phenotype annotations, to calculate the 
likelihood of diseases based on the phenotypic features observed 
in patients. For example, "arachnodactyly" is a relevant feature 
for "Marfan syndrome" in HPO database, so if a patient exhibits 
"arachnodactyly," they are more likely to have the disease. 
InheriNext® and other tools use phenotype-driven methods to 
rank potential pathogenic genes based on phenotypic features 
in addition to patient genotype data. In the benchmark samples, 
diverse annotated phenotype counts are inputted for each sample 
based on phenotypic features in the Phenopacket record used to 
create that particular simulated case. However, a large count might 
decrease the performance in ranking causative genes because it may 
include more unrelated (noise) features, which are not annotated 
in the disease. For phenotype counts distribution, the results 
show that: the range of 6-10 phenotypes is most common, seen 
in 1821 samples, followed closely by the 21-50 range with 1737 

samples (Figure 3A). The number of phenotype inputs across each 
tool’s Top-10s were evaluated to assess performance. The results 
show that InheriNext® demonstrates consistent performance 
with percentages ranging from 98% to 100%, indicating strong 
capability across all phenotype input ranges. Tool A maintains high 
percentages, reaching 97% in the 6-10 and 11-15 ranges, but drops 
to 82% in the >50 category. Tool B, Tool C, and Tool D remain 
steady with over 82% in most ranges; however, they experience a 
more significant drop in the >50 category (Figure 3B).

Evaluation of Ranking Performance in Four Disease Groups
Each benchmark sample is annotated with a specific disease. 
However, some diseases do not match a specific MONDO ID 
and are therefore removed, leaving 7215 samples for analysis. 
The Phenopacket-annotated diseases were mapped to second-
layer categories from MONDO ontologies (Figure S1) to generate 
a word matrix for TF-IDF similarity calculation (Figure S2 A). 
The optimal number of clusters for the Phenopacket diseases 
was determined using k-means clustering with the elbow method 
applied to the word matrix. This analysis classified the diseases 
into four major groups, as shown in Figure. S3. To enhance 
interpretability, these four groups were subsequently renamed 
with more representative titles, as detailed in Table S1 B.

The scatter plot below displays the distribution of different 
diseases across four major disease groups, with each data point 
symbolizing a distinct disease. The size of each point reflects the 
number of samples for that disease. As reflected by the dense 
cluster of orange points, this plot clearly shows that the Nervous 
System and Metabolic System Disorder group has the highest 
number of samples (Figure 4A). A table is presented that lists 
examples of actual diseases found in the benchmark samples 
grouped in four major disease categories (Figure 4B). To evaluate 
ranking performance, the Top-10 rate was used as an indicator 
across four disease groups. The results show that InheriNext® 
consistently ranks over 98% of samples' causative genes within 
the Top-10, demonstrating non-discriminatory performance across 
major disease groups. 

In comparison, other tools show variability based on the disease 
type. For example, Tool B performs well in the Cancer or Benign 
Tumor category but less effectively in the Nervous or Metabolic 
Disorder group (Figure 4C).

(Note: Disease group names were abbreviated slightly while 
keeping key terms for clarity and consistency:
1.	 Development or morphogenesis disorder, musculoskeletal 

system disorder = Development or musculoskeletal disorder
2.	 Nervous system and metabolic system disorder = Nervous or 

metabolic disorder 
3.	 Cancer or benign tumor = Cancer or benign tumor
4.	 Visual system, orbital region disorder = Visual, orbital region 

disorder)

Benchmarking tests for InheriNext® showed some key performance 
strengths, which could be attributed to the following factors: 
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Figure 3: Distribution of Phenotypes Counts in Benchmark Samples. (A) The bar graph illustrates the distribution of samples with different ranges 
of annotated phenotypic feature counts. Each bar's height represents the sample count within a specific range. (B) The five bar charts represent the 
performance of different tools— InheriNext®, Tool A, Tool B, Tool C, and Tool D—across various feature count ranges. Each chart shows the 
percentage of samples’ causative genes successfully ranked within the Top-10 for each phenotypic feature count range. 

(A)

(B)
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(A)
Disease Groups Examples
Development or morphogenesis disorder, musculoskeletal system 
disorder KBG syndrome Holt-Oram syndrome

Nervous system & metabolic system disorder Cockayne syndrome Developmental and epileptic
encephalopathy 4

Cancer or benign tumor Multiple endocrine
neoplasia type 2A Neurofibromatosis type 1

Visual system, orbital region disorder Leber congenital
amaurosis 6 Ectopia lentis, familial’

(B)

(C)

Figure 4: Disease Distribution in Benchmark. (A) The scatter plot illustrates the distribution of diseases by condensing complex data into two principal 
components (Principal Component #1 and Principal Component #2), highlighting similarities and clustering in four disease groups among the samples. 
Each point represents a unique disease, and the size indicates the number of samples for that disease; larger points signify a greater number of samples. 
(B) Example of actual diseases observed in the benchmark samples across four disease groups. (C) The performance comparison across the five tools 
shows the percentage of samples' causative genes in Top-10 distributed among the four groups of diseases (abbreviated). 
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(1) Integration of Disease Similarity Score Enhances InheriNext® 
Ranking Performance:
InheriNext® incorporates clinician feedback to refine the 
prioritization of pathogenic genes. One such enhancement was 
prompted by a request to improve the assessment of similarity 
between disease symptoms and patient phenotypes, leading to the 
integration of a disease similarity score. This feature contributes to 
stable ranking performance across a variety of disease conditions 
(Figure 4C). By aligning more closely with clinical realities, this 
integration supports more accurate and relevant predictions.

(2) Delay Filtering and Removal of Candidates Until After 
Prioritization:
InheriNext® evaluates all potential causative variants and genes, 
including those with a lower initial likelihood of pathogenicity, 
to account for their possible clinical relevance. In contrast, other 
tools may apply early variant consequence filters—for example, 
excluding 5′ UTR exon variants—which may result in the removal 
of relevant pathogenic candidates (Table 1B: 5′ UTR exon variant, 
Tools B–D). InheriNext® retains all candidates through the 
prioritization stage, enabling more consistent ranking performance 
across variant types and supporting the identification of atypical or 
rare variants.

Despite overall strong performance, several challenges remain. 
These include limitations in the classification of variants of 
uncertain significance (VUS) in ClinVar, the underestimation 
of certain high-allele-frequency variants' pathogenicity, and 
ambiguous functional consequences of specific variants. 
Benchmarking also identified reduced performance in a subset of 
samples. Further analysis identified two 
(2) primary contributors, offering clear targets for future refinement:
(1) Variants Annotated with Synonymous Consequence Did Not 
Rank Well (Table 1B):

In its initial implementation, InheriNext® excluded synonymous 
variants from ranking due to their typically neutral effect relative 
to non-synonymous variants. This exclusion was intended to 
streamline prioritization by focusing on more likely pathogenic 
candidates. However, this approach led to the omission of clinically 
relevant variants, counter to the broader goal of comprehensive 
evaluation (see “Delay Filtering and Removal of Candidates 
Until After Prioritization”). Recent studies have shown that 
some synonymous variants may have functional consequences, 
such as impacting splicing motifs or cryptic splice sites, altering 
microRNA binding [14], and affecting mRNA structure or protein 
expression via reduced codon optimality [15-17]. In response, 
InheriNext® has begun to incorporate synonymous variants into 
the ranking process to improve sensitivity and better reflect their 
potential clinical relevance.

(2) High Allele Frequency of the Variants Affect Ranking:
The ClinGen Sequence Variant Interpretation Working Group 
has refined the ACMG/AMP variant pathogenicity guidelines for 
rule BA1, which designates variants with a minor allele frequency 
(MAF) > 0.05 as benign. However, they identified nine (9) variants 

with MAF > 0.05 that may exhibit pathogenicity. These findings 
suggest that MAF and pathogenicity do not always correlate. As 
a result, InheriNext® algorithm may inadvertently penalize genes 
based on the high allele frequency and affect the ranking accuracy. 
While high-frequency variants are typically deemed benign, some 
may still possess pathogenic potential, emphasizing the need to 
evaluate additional factors when assessing variant pathogenicity. 
Future optimizations will incorporate additional criteria for 
adjusting gene scores. The intention is to retain the variant 
frequency filter as recommended by ACMG/AMP guidelines [18]. 
However, specific exceptions are systematically reviewed and 
curated as they appear in the clinical genetics literature, allowing 
potentially pathogenic variants to be considered despite their 
relatively high frequency.

Conclusion
The benchmarking analysis demonstrates that InheriNext® 
reliably prioritizes candidate pathogenic genes under varied testing 
scenarios among the tools assessed. In evaluations of phenotype-
driven gene prioritization methods, InheriNext® achieved the 
highest Top-10 capture rate at 98.6% and the lowest missed rate, 
reflecting high sensitivity. This result is supported by consistent 
performance across various variant consequences, particularly the 
most common types—missense variants, stop gains, and frameshift 
truncations—although some limitations were noted (and addressed) 
with synonymous variants. Additional tests demonstrate that it 
maintained ranking accuracy as phenotype complexity increased 
and across different disease groups, indicating its adaptability 
across different clinical contexts.

Taken together, these findings suggest that InheriNext® is a 
reliable tool for gene prioritization, with effective integration of 
genomic and phenotypic data. Its performance across multiple 
testing dimensions supports its potential utility to assist in genetic 
diagnostics and research applications.
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Supplementary Materials
K-means Clustering Diseases Using Term Frequency-inverse Document Frequency (TF-IDF) and Principal Component Analysis 
(PCA)
(1) Building Ontology Structure:
MONDO ontologies are used to standardize disease terminology within a unified framework to establish initial relationships and 
processes specific MONDO for analysis [1]. The diagram below shows a simplified version of the MONDO ontology (Figure S1). At 
the root is "Disease" highlighted in the red box. Following it is "human disease", which branches into several second-layer categories, 
such as "cardiovascular disorder", "acute disease", "cancer or benign tumor", and "disorder of development or morphogenesis". In 
MONDO system, these second-layer categories composition terms are broken down into individual words for calculating similarity 
between diseases.

Figure S1: The simplified ontology hierarchical structure of diseases in the MONDO System. This diagram represents a portion of the 
MONDO disease ontology, illustrating the hierarchical relationships among various diseases. The "Root" node at the center is labeled 
"Disease," from which several branches extend to different disease categories and sub-categories.

(2) Text Processing and Term Frequency-Inverse Document Frequency (TF-IDF) Calculation:
In the Phenopacket-annotated diseases, there are 28 unique second-layer categories from MONDO ontologies. These second-layer 
categories composition terms are broken down into individual words, with stopwords such as "the", "is", "that" removed, and assembled 
into a word matrix (Figure S2 A). Each Phenopacket disease's corresponding second-layer categories are then represented by a set of 
word vectors, which are converted into TF-IDF vectors for subsequent similarity analysis [2]. The dendrogram was used to interpret 
how disease terms cluster together based on their TF-IDF similarity scores. In F Figure. S2 B, a lower linkage height indicates greater 
similarity between terms. For example, if two disease terms are joined at a low height, they share a high degree of textual similarity 
based on their TF-IDF scores. In this analysis, the dendrogram visually represents the hierarchical relationships between disease terms, 
with the height reflecting their TF-IDF-based distances. It effectively highlights these distances, helping to distinguish closely related 
disease terms from more distinct ones. Furthermore, dendrograms rely on the ultrametric tree assumption, which rarely holds in real-
world text analysis, and may lead to misleading representations of term similarities. To overcome these challenges, Principal component 
analysis (PCA) and k-means clustering were adopted for disease term classification. PCA reduces the dimensionality of TF-IDF vectors 
while preserving key features, improving visualization and interpretability. K-means, on the other hand, provides a scalable and flexible 
clustering approach that determines a specific number of groups, allowing for further evaluation and analysis of these disease clusters.

Α
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Β
Figure S2: The ontology hierarchical relationship among diseases in the dendrogram based on TF-IDF similarity from a word matrix. (A) A word 
matrix generated from 28 unique second-layer disease categories, with category names tokenized into individual terms after removing common stop 
words. (B) The dendrogram illustrates the hierarchical clustering of disease terms based on TF-IDF similarity, where lower linkage heights indicate 
greater textual similarity. As the hierarchy builds upward, the structure may become less precise in reflecting actual semantic distances.
 
(3) Principal Component Analysis (PCA) and K-means Clustering:
To present the results more intuitively, PCA was applied to reduce dimensionality and capture the most significant differences in the 
TF-IDF vectors of Phenopacket diseases [3]. This reduction process enabled visualization in a 2D plot. After applying PCA, k-means 
clustering was used to group the diseases based on these reduced dimensions. K-means clustering is an unsupervised learning algorithm 
used for grouping unlabeled data points into distinct clusters [4]. To effectively apply k-means, the elbow method [5] was used to 
determine the optimal number of clusters. The optimal K was identified at the point where Within-Cluster Sum of Squares (WCSS) stops 
decreasing sharply, indicating a balance between cluster compactness and flexibility. The results showed that when K=4, SSE exhibited 
a steep decline before leveling off, suggesting that four clusters provided the most effective grouping without overfitting or unnecessary 
complexity (Figure S3).

Figure S3: The Elbow Method for determining the optimal number of clusters. K values from one to seven were tested, using WCSS as a 
performance metric. The plot showed a sharp decline in WCSS when K = 4; beyond this point, adding more clusters did not significantly 
improve clustering performance, as the rate of WCSS decrease slowed down.
 
(4) Defining Representative Disease Terms Across Four Clusters:
After categorizing the diseases into four groups, the top two highest-frequency terms in each group were selected as representative 
names by Mondo ontology second-layer disease terms, providing a clearer and more direct overview of diseases in benchmark. When 
choosing a representative name, the International Classification of Diseases (ICD) was considered, as it offers a comprehensive disease 
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classification system that typically includes standardized disease names [6]. Although syndromic disease is a recognized classification 
in the MONDO ontology system—referring to disorders that affect multiple organ systems—it cannot be classified under ICD-11 (Table 
S1 A). Due to its lack of specificity and limited representative power for precise disease grouping, syndromic disease was excluded to 
enable a clearer understanding of the disease categories. Note that only the terms within each cluster observed in the benchmark are 
presented in Table S1 A. Finally, representative names were selected from the top two most frequent terms within each cluster to define 
a more informative and meaningful disease label (Table S1 B).

Table S1: Top Two High-Frequency Terms in Each Cluster Defining the Representative Disease Group Name. (A) ICD-11 is considered for selecting 
the representative disease term. (B) In the MONDO ontology system, 28 unique second- layer terms are used to classify disease groups, providing a 
structured hierarchy for disease representation. The table presents the top two highest-frequency terms from each of the four clusters, which will be 
considered in defining a representative disease term.
Α

ICD-11 for Disease Classifications System
Mondo disease terms

(second layer)
01 Certain infectious or parasitic diseases  
02 Neoplasms cancer or benign tumor
03 Diseases of the blood or blood-forming organs  
04 Diseases of the immune system  
05 Endocrine, nutritional or metabolic diseases  
06 Mental, behavioural or neurodevelopmental disorders disorder of development or morphogenesis
07 Sleep-wake disorders  
08 Diseases of the nervous system nervous system disorder
09 Diseases of the visual system disorder of orbital region disorder of visual system
10 Diseases of the ear or mastoid process  
11 Diseases of the circulatory system  
12 Diseases of the respiratory system  
13 Diseases of the digestive system  
14 Diseases of the skin  
15 Diseases of the musculoskeletal system or connective tissue musculoskeletal system disorder
16 Diseases of the genitourinary system  
17 Conditions related to sexual health  
18 Pregnancy, childbirth or the puerperium  
19 Certain conditions originating in the perinatal period  
20 Developmental anomalies  
21 Symptoms, signs or clinical findings, not elsewhere classified  
22 Injury, poisoning or certain other consequences of external causes  
23 External causes of morbidity or mortality  
24 Factors influencing health status or contact with health services  
25 Codes for special purposes  
26 Supplementary Chapter Traditional Medicine Conditions  

Β

Clusters Mondo disease terms Term Representative Disease
(second layer) frequency Classification

Class 0 disorder of orbital region 357 Visual system, orbital
disorder of visual system 357 region disorder

Class 1 cancer or benign tumor 474 Cancer or benign tumorsyndromic disease 474

Class 2 nervous system disorder 2254 Nervous system and metabolic system disordermetabolic disease 696

Class 3
disorder of development or morphogenesis 2035

Development or morphogenesis disorder, 
musculoskeletal system disordersyndromic disease 1925

musculoskeletal system disorder 1185
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Table S2: Variant Consequence Annotations in the Sequence Ontology. This table illustrates the standardized annotations provided by the Sequence 
Ontology to describe the consequences of genetic variants on biological sequences. The columns include the SO ID, the corresponding SO term, and 
the description of each term. Only the consequences observed in the benchmark samples are presented in this figure.
SO Term SO ID Description

Missense variant SO:0001583 A sequence variant, that changes one or more bases, resulting in a different amino acid 
sequence but where the length is preserved.

Stop gained SO:0001587 A sequence variant whereby at least one base of a codon is changed, resulting in a 
premature stop codon, leading to a shortened polypeptide.

Frameshift truncation SO:0001910 A frameshift variant that causes the translational reading frame to be shortened relative to 
the reference feature.

Coding transcript intron variant SO:0001969 A transcript variant occurring within an intron of a coding transcript.

Frameshift variant SO:0001589 A sequence variant which causes a disruption of the translational reading frame, because 
the number of nucleotides inserted or deleted is not a multiple of three.

Splice region variant SO:0001630 A sequence variant in which a change has occurred within the region of the splice site, 
either within 1-3 bases of the exon or 3-8 bases of the intron.

Splice donor variant SO:0001575 A splice variant that changes the 2 base pair region at the 5' end of an intron.

Frameshift elongation SO:0001909 A frameshift variant that causes the translational reading frame to be shortened relative to 
the reference feature.

Splice acceptor variant SO:0001574 A splice variant that changes the 2 base pair region at the 5' end of an intron.

Disruptive inframe deletion SO:0001826 An inframe decrease in cds length that deletes bases from the coding sequence starting 
within an existing codon.

Complex substitution SO:1000005
When no simple or well defined DNA mutation event describes the observed DNA 
change, the keyword \"complex\" should be used. Usually there are multiple equally 
plausible explanations for the change.

Inframe deletion SO:0001822 An inframe non synonymous variant that deletes bases from the coding sequence.
5 prime UTR exon variant SO:0002092 A UTR variant of exonic sequence of the 5'UTR.

Feature truncation SO:0001906 A sequence variant that causes the reduction of a genomic feature, with regard to the 
reference sequence.

Start lost SO:0002012 A codon variant that changes at least one base of the canonical start codon.

MNV SO:0002007 An MNV is a multiple nucleotide variant (substitution) in which the inserted sequence is 
the same length as the replaced sequence.

Direct tandem duplication SO:1000039 A tandem duplication where the individual regions are in the same orientation.
Synonymous variant SO:0001819 A sequence variant where there is no resulting change to the encoded amino acid.

Disruptive inframe insertion SO:0001824 An inframe increase in cds length that inserts one or more codons into the coding 
sequence within an existing codon.

3 prime UTR intron variant SO:0002090 A UTR variant of intronic sequence of the 3' UTR.
5 prime UTR intron variant SO:0002091 A UTR variant of intronic sequence of the 5' UTR.

Stop lost SO:0001578 A sequence variant where at least one base of the terminator codon (stop) is changed, 
resulting in an elongated transcript.

Inframe insertion SO:0001821 An inframe non synonymous variant that inserts bases into in the coding sequence.
Exon loss variant SO:0001572 A sequence variant whereby an exon is lost from the transcript.
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