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ABSTRACT

In limited-angle tomography, the system of imaging equations is underdetermined, and a naive reconstruction may
not have any practical values. Additional information is needed to augment the data so that a useful image can be
reconstructed. This additional information is usually implemented as a Bayesian term in the objective function for
an iterative optimization procedure. The state-of-the-art augmented information is the total variation (TV) norm of
the image. The TV norm enforces a smooth image with sharp edges. The novelty of this paper is a new Bayesian term
that is in the form of a neural network. This neural network is a classifier trained by images reconstructed by full and
limited-angle projections. The impact of the proposed method is that the information provided by the neural network
contains more features of the images than the TV norm and better reconstruction is expected. Computer simulations

are carried out and presented.
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Introduction

Data sufficiency conditions have been well established for imaging
modalities and geometries [1]. If the data sufficiency conditions
are satisfied, stable image reconstruction algorithms exist. Due
to many practical constraints such as camera size, object size,
and trajectory obstacles, the conditions cannot be met. In these
situations, the measurements are referred to as incomplete.

In various clinical imaging techniques, incomplete data due to
limited-angle or few-view projections can hinder diagnostic
accuracy. For example, in dental and C-arm cone-beam imaging [2-
7], the camera typically rotates in a circle, already failing to capture

a full dataset by violating Tuy’s condition [8]. Limited-angle or
few-view acquisition only makes the situation worse. In Digital
Breast Tomosynthesis (DBT) [9-12], 11 to 49 images are taken
from different angles as the X-ray tube moves in an arc over the
breast, a scenario known as limited-angle, few-view tomography.
While DBT provides critical diagnostic information, its data set is
inherently incomplete. Breast CT, which offers higher resolution,
is rarely used due to the increased radiation dose, particularly in
patients who are young or at high risk.

In intraoperative settings, e.g., spinal tumor resections, C-arm
fluoroscopy is employed to verify the position of surgical
instruments (e.g., screws, rods). However, during these procedures,
the available data often comes from limited-angle imaging or
few-view CT. Similarly, cone-beam CT is utilized in image-
guided radiation therapy (IGRT) to assist with precise targeting
during radiotherapy treatments [13,14]. In these cases, when only
a limited number of views are accessible such as in lung cancer
treatments, where respiratory motion complicates positioning,
advanced reconstruction techniques are crucial to maintain image
quality. Few-view imaging has proven beneficial in cases where
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tumor access is constrained or where the patient's positioning
makes full-angle imaging impossible [15-19]. This is particularly
true in image-guided breast cancer surgery, where limited-angle
imaging is frequently required due to the patient's body position.

Emergency departments often face situations where full-angle
imaging cannot be achieved due to patient instability or inability
to reposition. In these cases, few-view scans are critical for rapid
assessment of conditions like fractures, internal bleeding, or organ
damage. In spinal surgeries, interventional oncology, or trauma
care, the limitations on imaging angles may necessitate specialized
reconstruction methods to achieve clinically useful images.

A key challenge in these applications is minimizing radiation
exposure, especially in pediatric patients, individuals requiring
repeated imaging, and cancer patients undergoing radiotherapy.
Adhering to the "As Low As Reasonably Achievable" (ALARA)
principle ensures that radiation doses are minimized while still
providing necessary clinical information [20-28]. Adhering to the
"As Low as Reasonably Achievable" (ALARA) principle ensures
that radiation doses are minimized while still providing necessary
clinical information [20-28]. Few-view tomography offers a
promising solution. However, the resulting images often suffer
from artifacts due to the incomplete data set. Thus, developing
methods to mitigate these artifacts is a critical area of focus for
this proposal.

In the field of medical imaging, such as x-ray computed
tomography (CT), standard protocols usually guarantee that the
data collected is sufficient for accurate image reconstruction. The
conditions required to obtain a complete data set are well defined.
These include Tuy’s condition for cone beam imaging geometry
[8]. However, in practical scenarios, these conditions may be
violated due to various constraints such as the structure and size
of the camera, the movement trajectory during imaging, metal
obstruction, and restrictions on imaging time. These violations lead
to incomplete data sets, which complicate the image reconstruction
process and may introduce artifacts in the reconstructed images.

Here is the current understanding of why incomplete data
may cause artifacts and how to reduce them. The first-order
approximation of the measurements in tomographic imaging can
be represented as a system of linear equations, commonly referred
to as the imaging equations [29-34]. The first-order approximation
of measurements in tomographic imaging can be represented as a
system of linear equations, commonly referred to as the imaging
equations [29-34]. In these equations, the unknowns are the values
of the image pixels. When the data sufficiency conditions are not
met, the system of imaging equations becomes underdetermined.
This means there are more unknowns than equations, making the
problem of image reconstruction extremely ill-conditioned [35-
41].

In an ill-conditioned problem, a small deviation in the input data
can lead to large variations in the output, making the reconstruction
process highly sensitive to errors. Even in a noiseless situation, the

solution is not unique. This is a significant challenge in medical
imaging, as accurate and reliable images are crucial for diagnosis
and treatment planning.

To address the issue of ill-conditioning, regularization techniques
are employed. Regularization introduces additional information
or constraints to stabilize and restrict the solution to a desired
category. The theoretically ideal regularization method is the use
of the L, norm minimization, which is suggested by compressed
sensing methodology when the image, or a transformed version of
it, is sparse [42-58]. Sparsity implies that most of the image pixels
are zero. The L norm counts the number of non-zero pixels in the
image. However, the L norm is difficult to use in optimization
algorithms due to its derivative being zero almost everywhere,
making it challenging to implement effectively. The total variation
(TV) norm measures the total change in intensity across the image,
which is the L, norm of the image gradients. TV norm optimization
is a good substitution for L) norm optimization and has become
the state-of-the-art technique [59-70]. TV regularization has
limitations. It primarily measures the total change and does not
give special priority to piecewise constant functions.

Machine learning has revolutionized numerous fields, including
medical imaging. One of the remarkable capabilities of neural
networks is their ability to transform images with artifacts into clear,
patient-like images [71-94]. However, this powerful tool comes
with significant responsibilities. When the measurements used to
create these images are incomplete, the neural network-generated
images may contain hallucinations, which do not correspond to
actual patient data [95-100]. These hallucinations can mislead
medical diagnoses, potentially causing harm. The hallucinations
may be caused by limited data, noise, wrong assumptions made by
the reconstruction algorithms, or the deep-learning models.

To ensure the reliability of reconstructed images from under-
sampled data, it is crucial that the final image is primarily
determined by the actual measurements. The role of the neural
network should be limited to providing regularization, rather than
generating the image itself. In this context, we do not assume that
the image, or any transformed version of it, is sparse.

Our approach involves using the patient population to develop a
neural network that functions as a classifier. This classifier will
produce a continuous output rather than a binary one. A smaller
output value will indicate that the image is closer to the typical
images found in the patient population. This method aims to
ensure that the reconstructed images are as accurate and reliable
as possible, even when the data is incomplete. By focusing on
the specific properties of piecewise functions, we hope to achieve
better regularization and, consequently, higher-quality images in
medical tomographic imaging.

To do better than using the TV norm in an objective function, this
paper suggests using a neural network as a Bayesian term [101,102].
The motivation of this suggestion is that a neural network can
extract more features than the TV norm to identify desired images.
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There are many types of neural networks. Some of them are
generative. For example, a trained neural network can convert a
low-resolution image to a high-resolution image, to remove noise
from a noisy image, or to reduce the artifacts from the original
image. When measurements are incomplete, the image obtained
by the generative network may contain hallucinations, which are
some small details not in the original objects. Hallucinations can
lead to misinformation and incorrect diagnoses. This is a serious
concern, especially in diagnostic imaging. On the other hand,
neural network classifiers are more trustworthy and usually have
better-than-human performances.

We will use the more reliable iterative image reconstruction to
reconstruct the image from the incomplete measurements with a
neural network classifier being a Bayesian term in the objective
function. In the next section we will explain how a classifier is
converted into a Bayesian term.

Methods

Objective Function

The objective function for iterative image reconstruction usually
contains a data fidelity term and one or more Bayesian terms.

The data fidelity term is the squared L, norm of the distance
between the measurements and the forward projections of the
reconstructed image.

A typical Bayesian term is the TV norm of the reconstructed
image. Here we suggest a new Bayesian term that is calculated by
a neural network.

The proposed neural network is a classifier with a slight
modification. Let us consider a two-class classifier, which is a
deep-convolutional neural network (CNN) followed by a single
neuron with a sigmoid activation function. The sigmoid function
has two large flat regions, and the derivative of the sigmoid
function is almost zero in these regions. A flat objective function
term is not desired because it is almost useless in a gradient based
optimization algorithm.

This classifier is trained by images reconstructed with full data
(label = 0) and images reconstructed with incomplete data (label
= 1). After this classifier is trained by a supervised algorithm, we
remove the final sigmoid function. We use the trained classifier
without the final sigmoid function as a new Bayesian term in the
objective function for image reconstruction.

Neural Network Classifier

Any neural network classifier can be used. We randomly selected
a with 7 CNN layers with the number of channels as 5, 10, 35, 40,
45, 50 and 1, respectively. At each CNN layer, the convolution
kernel size was 3 x 3, strides were 2, activation function was a
ReLU (rectified linear unit). Finally, we had a dense neuron. The
input image size was 64 x 64. The output was a real scalar. The
training images were computer simulated consisting of 50,000 true
images and 50,000 images reconstructed with incomplete data.

The ‘adam’ algorithm was used to train the network with the 10
epochs.

Image Reconstruction

An iterative gradient descent algorithm was used to minimize the
objective function, which consisted of three terms: the data fidelity
term, the TV Bayesian term and the neural network Bayesian term.

The gradients of the neural network output with respect to the
image pixels can be readily obtained by using TensorFlow’s
backpropagation as [103]:

with tf.GradientTape() as tape:
tape.watch(recon_tensor)
output = model(recon_tensor)
grads = tape.gradient(output, recon_tensor)

Here recon_tensor is the current reconstructed image tensor, and
output is the network output. This snippet tracks how the output
changes concerning the recon_tensor.

In TensorFlow, tf.GradientTape is a context manager that records
operations for automatic differentiation.

We start the context for recording: with tf.GradientTape() as tape.

We then tell the tape to watch recon_tensor so that it keeps track
of all operations involving this tensor for gradient calculation
using tape.watch(recon_tensor).

We pass recon_tensor through the model to get the output as
output = model(recon_tensor).

Finally, we compute the gradients of output with respect to recon_
tensor.

Computer Simulations

We randomly generated some phantom images that were never
used in the network training for image reconstruction studies. The
phantoms ellipses of random shapes, directions, locations, and
intensities.

In one set of studies, the scanning angles covered 60°. In the other
set of studies, the scanning angles covered 70°. The number of
iterations in image reconstruction was 30,000. The step size for
the data fidelity term was 0.01. The step size for the TV term was
0.001. The step size for the network term was 0.2. Projections
were parallel beams. For comparison purposes, we also performed
the reconstruction with the following methods: non-iterative
Filtered Backprojection (FBP) reconstruction, iterative TV
reconstruction (by disabling the network Bayesian term), and
iterative reconstruction by disabling the TV term.

Results

Eight phantom reconstruction results are presented in Figures 1
to 8. Figures 1 to 4 use projections over 70°. Figures 5 to 8 use
projections over 60°.
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Scanning angle = 70° used; Network: TV term is not used; TV + Network: both TV and network
True FBP terms are used.

TV Network
TV + Network
Figure 3: Simulation case 3.

Figure 1: Simulation case 1. True: True image; FBP: FBP reconstruction; TV: network term is not
True: True image. FBP: FBP reconstruction. TV: network term is notused. ~ used; Network: TV term is not used; TV + Network: both TV and network

Network: TV term is not used. TV + Network: both TV and network terms ~ terms are used.

are used.
True FBP
™

Network

TV + Network

Network

TV + Network

Figure 4: Simulation case 4.
Figure 2: Simulation case 2. True: True image; FBP: FBP reconstruction; TV: network term is not used,;

True: True image; FBP: FBP reconstruction; TV: network term is not Network: TV term is not used; TV + Network: both TV and network terms are used.
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Scanning angle = 60°

True

Netwaork

TV 4 Network

Figure 5: Simulation case 5.

True: True image; FBP: FBP reconstruction; TV: network term is not used;
Network: TV term is not used; TV + Network: both TV and network terms

are used.

True

Netwaork

TV + Network

Figure 6: Simulation case 6.

True: True image; FBP: FBP reconstruction; TV: network term is not used
Network: TV term is not used; TV + Network: both TV and network terms are used.

True

Network

TV + Network

Figure 7: Simulation case 7.
True: True image; FBP: FBP reconstruction; TV: network term is not
used; Network: TV term is not used; TV + Network: both TV and network

terms are used

True FBP

™v Network

TV + Network

Figure 8: Simulation case 8.
True: True image; FBP: FBP reconstruction; TV: network term is not
used; Network: TV term is not used; TV + Network: both TV and network

terms are used.
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Discussion and Conclusions

Image reconstruction with incomplete measurements such as
limited-angle tomography is extremely ill-conditioned. Naive
reconstruction (e.g., using FBP) may not produce a useful image.
Additional information (or prior knowledge of the object) must
be used to assist with the reconstruction. This prior knowledge
can be learned by a neural network from a large population of
similar images. The extracted common features are stored in the
network weights. In a neural network classifier, the input image
is compared with the stored features, and the similarity score is
the output. Thus, a network classifier is a good candidate for a
Bayesian term in the objective function for image reconstruction.

Our computer simulations show the feasibility of using a neural
network classifier as a Bayesian term in the objective function,
as a supplement to the TV norm. The TV norm smooths image
fluctuations, while the neural network better defines shapes and
boundaries.

The limited-angle imaging cases (60° and 70°) are more severe
than one encounters in reality. The final reconstruction still does
not recover all edges in the original image. The effectiveness of the
Bayesian terms is demonstrated by computer simulation examples.
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