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ABSTRACT
In limited-angle tomography, the system of imaging equations is underdetermined, and a naïve reconstruction may 
not have any practical values. Additional information is needed to augment the data so that a useful image can be 
reconstructed. This additional information is usually implemented as a Bayesian term in the objective function for 
an iterative optimization procedure. The state-of-the-art augmented information is the total variation (TV) norm of 
the image. The TV norm enforces a smooth image with sharp edges. The novelty of this paper is a new Bayesian term 
that is in the form of a neural network. This neural network is a classifier trained by images reconstructed by full and 
limited-angle projections. The impact of the proposed method is that the information provided by the neural network 
contains more features of the images than the TV norm and better reconstruction is expected. Computer simulations 
are carried out and presented.
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Introduction
Data sufficiency conditions have been well established for imaging 
modalities and geometries [1]. If the data sufficiency conditions 
are satisfied, stable image reconstruction algorithms exist. Due 
to many practical constraints such as camera size, object size, 
and trajectory obstacles, the conditions cannot be met. In these 
situations, the measurements are referred to as incomplete. 

In various clinical imaging techniques, incomplete data due to 
limited-angle or few-view projections can hinder diagnostic 
accuracy. For example, in dental and C-arm cone-beam imaging [2-
7], the camera typically rotates in a circle, already failing to capture 

a full dataset by violating Tuy’s condition [8]. Limited-angle or 
few-view acquisition only makes the situation worse. In Digital 
Breast Tomosynthesis (DBT) [9-12], 11 to 49 images are taken 
from different angles as the X-ray tube moves in an arc over the 
breast, a scenario known as limited-angle, few-view tomography. 
While DBT provides critical diagnostic information, its data set is 
inherently incomplete. Breast CT, which offers higher resolution, 
is rarely used due to the increased radiation dose, particularly in 
patients who are young or at high risk.

In intraoperative settings, e.g., spinal tumor resections, C-arm 
fluoroscopy is employed to verify the position of surgical 
instruments (e.g., screws, rods). However, during these procedures, 
the available data often comes from limited-angle imaging or 
few-view CT. Similarly, cone-beam CT is utilized in image-
guided radiation therapy (IGRT) to assist with precise targeting 
during radiotherapy treatments [13,14]. In these cases, when only 
a limited number of views are accessible such as in lung cancer 
treatments, where respiratory motion complicates positioning, 
advanced reconstruction techniques are crucial to maintain image 
quality. Few-view imaging has proven beneficial in cases where 
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tumor access is constrained or where the patient's positioning 
makes full-angle imaging impossible [15-19]. This is particularly 
true in image-guided breast cancer surgery, where limited-angle 
imaging is frequently required due to the patient's body position.

Emergency departments often face situations where full-angle 
imaging cannot be achieved due to patient instability or inability 
to reposition. In these cases, few-view scans are critical for rapid 
assessment of conditions like fractures, internal bleeding, or organ 
damage. In spinal surgeries, interventional oncology, or trauma 
care, the limitations on imaging angles may necessitate specialized 
reconstruction methods to achieve clinically useful images.

A key challenge in these applications is minimizing radiation 
exposure, especially in pediatric patients, individuals requiring 
repeated imaging, and cancer patients undergoing radiotherapy. 
Adhering to the "As Low As Reasonably Achievable" (ALARA) 
principle ensures that radiation doses are minimized while still 
providing necessary clinical information [20-28]. Adhering to the 
"As Low as Reasonably Achievable" (ALARA) principle ensures 
that radiation doses are minimized while still providing necessary 
clinical information [20-28]. Few-view tomography offers a 
promising solution. However, the resulting images often suffer 
from artifacts due to the incomplete data set. Thus, developing 
methods to mitigate these artifacts is a critical area of focus for 
this proposal.

In the field of medical imaging, such as x-ray computed 
tomography (CT), standard protocols usually guarantee that the 
data collected is sufficient for accurate image reconstruction. The 
conditions required to obtain a complete data set are well defined. 
These include Tuy’s condition for cone beam imaging geometry 
[8]. However, in practical scenarios, these conditions may be 
violated due to various constraints such as the structure and size 
of the camera, the movement trajectory during imaging, metal 
obstruction, and restrictions on imaging time. These violations lead 
to incomplete data sets, which complicate the image reconstruction 
process and may introduce artifacts in the reconstructed images.

Here is the current understanding of why incomplete data 
may cause artifacts and how to reduce them. The first-order 
approximation of the measurements in tomographic imaging can 
be represented as a system of linear equations, commonly referred 
to as the imaging equations [29-34]. The first-order approximation 
of measurements in tomographic imaging can be represented as a 
system of linear equations, commonly referred to as the imaging 
equations [29-34]. In these equations, the unknowns are the values 
of the image pixels. When the data sufficiency conditions are not 
met, the system of imaging equations becomes underdetermined. 
This means there are more unknowns than equations, making the 
problem of image reconstruction extremely ill-conditioned [35-
41].

In an ill-conditioned problem, a small deviation in the input data 
can lead to large variations in the output, making the reconstruction 
process highly sensitive to errors. Even in a noiseless situation, the 

solution is not unique. This is a significant challenge in medical 
imaging, as accurate and reliable images are crucial for diagnosis 
and treatment planning.

To address the issue of ill-conditioning, regularization techniques 
are employed. Regularization introduces additional information 
or constraints to stabilize and restrict the solution to a desired 
category. The theoretically ideal regularization method is the use 
of the L0 norm minimization, which is suggested by compressed 
sensing methodology when the image, or a transformed version of 
it, is sparse [42-58]. Sparsity implies that most of the image pixels 
are zero. The L0 norm counts the number of non-zero pixels in the 
image. However, the L0 norm is difficult to use in optimization 
algorithms due to its derivative being zero almost everywhere, 
making it challenging to implement effectively. The total variation 
(TV) norm measures the total change in intensity across the image, 
which is the L1 norm of the image gradients. TV norm optimization 
is a good substitution for L0 norm optimization and has become 
the state-of-the-art technique [59-70]. TV regularization has 
limitations. It primarily measures the total change and does not 
give special priority to piecewise constant functions. 

Machine learning has revolutionized numerous fields, including 
medical imaging. One of the remarkable capabilities of neural 
networks is their ability to transform images with artifacts into clear, 
patient-like images [71-94]. However, this powerful tool comes 
with significant responsibilities. When the measurements used to 
create these images are incomplete, the neural network-generated 
images may contain hallucinations, which do not correspond to 
actual patient data [95-100]. These hallucinations can mislead 
medical diagnoses, potentially causing harm. The hallucinations 
may be caused by limited data, noise, wrong assumptions made by 
the reconstruction algorithms, or the deep-learning models.

To ensure the reliability of reconstructed images from under-
sampled data, it is crucial that the final image is primarily 
determined by the actual measurements. The role of the neural 
network should be limited to providing regularization, rather than 
generating the image itself. In this context, we do not assume that 
the image, or any transformed version of it, is sparse.

Our approach involves using the patient population to develop a 
neural network that functions as a classifier. This classifier will 
produce a continuous output rather than a binary one. A smaller 
output value will indicate that the image is closer to the typical 
images found in the patient population. This method aims to 
ensure that the reconstructed images are as accurate and reliable 
as possible, even when the data is incomplete. By focusing on 
the specific properties of piecewise functions, we hope to achieve 
better regularization and, consequently, higher-quality images in 
medical tomographic imaging.

To do better than using the TV norm in an objective function, this 
paper suggests using a neural network as a Bayesian term [101,102]. 
The motivation of this suggestion is that a neural network can 
extract more features than the TV norm to identify desired images. 
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There are many types of neural networks. Some of them are 
generative. For example, a trained neural network can convert a 
low-resolution image to a high-resolution image, to remove noise 
from a noisy image, or to reduce the artifacts from the original 
image. When measurements are incomplete, the image obtained 
by the generative network may contain hallucinations, which are 
some small details not in the original objects. Hallucinations can 
lead to misinformation and incorrect diagnoses. This is a serious 
concern, especially in diagnostic imaging. On the other hand, 
neural network classifiers are more trustworthy and usually have 
better-than-human performances. 

We will use the more reliable iterative image reconstruction to 
reconstruct the image from the incomplete measurements with a 
neural network classifier being a Bayesian term in the objective 
function. In the next section we will explain how a classifier is 
converted into a Bayesian term.

Methods
Objective Function
The objective function for iterative image reconstruction usually 
contains a data fidelity term and one or more Bayesian terms. 

The data fidelity term is the squared L2 norm of the distance 
between the measurements and the forward projections of the 
reconstructed image.

A typical Bayesian term is the TV norm of the reconstructed 
image. Here we suggest a new Bayesian term that is calculated by 
a neural network. 

The proposed neural network is a classifier with a slight 
modification. Let us consider a two-class classifier, which is a 
deep-convolutional neural network (CNN) followed by a single 
neuron with a sigmoid activation function. The sigmoid function 
has two large flat regions, and the derivative of the sigmoid 
function is almost zero in these regions. A flat objective function 
term is not desired because it is almost useless in a gradient based 
optimization algorithm.

This classifier is trained by images reconstructed with full data 
(label = 0) and images reconstructed with incomplete data (label 
= 1). After this classifier is trained by a supervised algorithm, we 
remove the final sigmoid function. We use the trained classifier 
without the final sigmoid function as a new Bayesian term in the 
objective function for image reconstruction. 

Neural Network Classifier
Any neural network classifier can be used. We randomly selected 
a with 7 CNN layers with the number of channels as 5, 10, 35, 40, 
45, 50 and 1, respectively. At each CNN layer, the convolution 
kernel size was 3 × 3, strides were 2, activation function was a 
ReLU (rectified linear unit). Finally, we had a dense neuron. The 
input image size was 64 × 64. The output was a real scalar. The 
training images were computer simulated consisting of 50,000 true 
images and 50,000 images reconstructed with incomplete data. 

The ‘adam’ algorithm was used to train the network with the 10 
epochs.

Image Reconstruction
An iterative gradient descent algorithm was used to minimize the 
objective function, which consisted of three terms: the data fidelity 
term, the TV Bayesian term and the neural network Bayesian term.

The gradients of the neural network output with respect to the 
image pixels can be readily obtained by using TensorFlow’s 
backpropagation as [103]:

with tf.GradientTape() as tape:
tape.watch(recon_tensor)  

output = model(recon_tensor)  
grads = tape.gradient(output, recon_tensor)

Here recon_tensor is the current reconstructed image tensor, and 
output is the network output. This snippet tracks how the output 
changes concerning the recon_tensor.

In TensorFlow, tf.GradientTape is a context manager that records 
operations for automatic differentiation. 

We start the context for recording: with tf.GradientTape() as tape.

We then tell the tape to watch recon_tensor so that it keeps track 
of all operations involving this tensor for gradient calculation 
using tape.watch(recon_tensor).

We pass recon_tensor through the model to get the output as 
output = model(recon_tensor).
Finally, we compute the gradients of output with respect to recon_
tensor.

Computer Simulations
We randomly generated some phantom images that were never 
used in the network training for image reconstruction studies. The 
phantoms ellipses of random shapes, directions, locations, and 
intensities.

In one set of studies, the scanning angles covered 60°. In the other 
set of studies, the scanning angles covered 70°. The number of 
iterations in image reconstruction was 30,000. The step size for 
the data fidelity term was 0.01. The step size for the TV term was 
0.001. The step size for the network term was 0.2. Projections 
were parallel beams. For comparison purposes, we also performed 
the reconstruction with the following methods: non-iterative 
Filtered Backprojection (FBP) reconstruction, iterative TV 
reconstruction (by disabling the network Bayesian term), and 
iterative reconstruction by disabling the TV term.

Results
Eight phantom reconstruction results are presented in Figures 1 
to 8. Figures 1 to 4 use projections over 70°. Figures 5 to 8 use 
projections over 60°.
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Scanning angle = 70°

Figure 1: Simulation case 1.
True: True image. FBP: FBP reconstruction. TV: network term is not used.
Network: TV term is not used. TV + Network: both TV and network terms 
are used.

Figure 2: Simulation case 2.
True: True image; FBP: FBP reconstruction; TV: network term is not 

used; Network: TV term is not used; TV + Network: both TV and network 
terms are used.

Figure 3: Simulation case 3.
True: True image; FBP: FBP reconstruction; TV: network term is not 
used; Network: TV term is not used; TV + Network: both TV and network 
terms are used.

Figure 4: Simulation case 4.
True: True image; FBP: FBP reconstruction; TV: network term is not used; 
Network: TV term is not used; TV + Network: both TV and network terms are used.
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Scanning angle = 60°

Figure 5: Simulation case 5.
True: True image; FBP: FBP reconstruction; TV: network term is not used; 
Network: TV term is not used; TV + Network: both TV and network terms 
are used.

Figure 6: Simulation case 6.
True: True image; FBP: FBP reconstruction; TV: network term is not used; 
Network: TV term is not used; TV + Network: both TV and network terms are used.

Figure 7: Simulation case 7.
True: True image; FBP: FBP reconstruction; TV: network term is not 
used; Network: TV term is not used; TV + Network: both TV and network 
terms are used

Figure 8: Simulation case 8.
True: True image; FBP: FBP reconstruction; TV: network term is not 
used; Network: TV term is not used; TV + Network: both TV and network 
terms are used.
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Discussion and Conclusions
Image reconstruction with incomplete measurements such as 
limited-angle tomography is extremely ill-conditioned. Naïve 
reconstruction (e.g., using FBP) may not produce a useful image. 
Additional information (or prior knowledge of the object) must 
be used to assist with the reconstruction. This prior knowledge 
can be learned by a neural network from a large population of 
similar images. The extracted common features are stored in the 
network weights.  In a neural network classifier, the input image 
is compared with the stored features, and the similarity score is 
the output. Thus, a network classifier is a good candidate for a 
Bayesian term in the objective function for image reconstruction.

Our computer simulations show the feasibility of using a neural 
network classifier as a Bayesian term in the objective function, 
as a supplement to the TV norm. The TV norm smooths image 
fluctuations, while the neural network better defines shapes and 
boundaries.

The limited-angle imaging cases (60° and 70°) are more severe 
than one encounters in reality. The final reconstruction still does 
not recover all edges in the original image. The effectiveness of the 
Bayesian terms is demonstrated by computer simulation examples.   
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