

Nature Vs Nurture: Cocaine Exposed Spermatogonia Impact Behavior and Executive Functions of Naive Offspring

Orien L Tulp*

Professor, Colleges of Medicine and Graduate Studies, University of Science Arts and Technology, Montserrat and East West College of Natural Medicine, Sarasota FL, USA.

***Correspondence:**

Orien L Tulp, Professor, Colleges of Medicine and Graduate Studies, University of Science Arts and Technology, Montserrat and East West College of Natural Medicine, Sarasota FL, USA.

Received: 01 May 2025; **Accepted:** 07 Jun 2025; **Published:** 16 Jun 2025

Citation: Tulp OL. Nature Vs Nurture: Cocaine Exposed Spermatogonia Impact Behavior and Executive Functions of Naive Offspring. Addict Res. 2025; 9(1): 1-7.

ABSTRACT

Cocaine in the form of Coca Leaf has been in use for many centuries, particularly in the Andean culture of South America to counter the environmental effects of high altitude and other physiological disorders. In recent decades, much of Western society has now been plagued with abuse of refined cocaine however, where it has become a major public health problem currently impacting over 20 million adults and adolescent youth. In chronic use, cocaine contributes to dopaminergic euphoria and aberrant behaviour, and may contribute to epigenetic damage to gene expression in unsuspecting offspring. To determine the effects of chronic cocaine use by males on the offspring of naïve females, groups of 60-day old lean LA/Ntul/-cp rats were reared from weaning on standard Purina chow and house water, and administered 0 (Controls), 30 (Low Dose), or 60 (High Dose) mg/kg body weight of cocaine HCL daily for 90±2 days to fully encompass the duration of spermatogenesis. Opiate treated males were then mated with 82±3 day-old normally reared naïve virgin females of the same strain that had never previously been exposed to the opioid or to a mating partner. Behavioral activity of each dosage level was assessed by subjecting the offspring postweaning at 21 days of age with a Stoelting activity wheel and a Calvin Hall open access exploratory field test. Offspring of pups were found to exhibit dose-related decreases in Stoelting wheel activity, with the greatest decrease at the highest dose administered ($p < 0.01$). Opiate treatment resulted in a latency in onset of exploratory activity at both dosage levels, and decreased exploratory activity in both inner squares and outer squares at the low dose group; In contrast, the High Dose group demonstrated an increase in outer square exploration and in the total numbers of squares explored compared to the Low Dose groups or Controls. These results suggest that male cocaine exposure during spermatogenesis may result in longstanding dose related behavioral changes in the offspring of naïve females and may predispose them to potential opioid-linked behavioral changes upon weaning, adolescence and later stages of life.

Keywords

Cocaine, Behavior, Exploratory activity, Rat offspring, Prenatal exposure, Epigenetics.

Introduction

Unpurified cocaine in the form of chewed coca leaf and coca teas have been in use for many centuries, particularly in the Andean culture of South America to counter the environmental effects of high altitude and other maladies and physiological disorders. In recent decades however, large quantities of refined cocaine have been introduced into Western and industrialized society that have

now become plagued with cocaine abuse, and where it has now become a major public health problem. In the USA, it currently impacts over 20 million adults and adolescents aged 12 and above, with a similar, alarming prevalence in other global populations. Because previous studies indicate that mammalian spermatozoa contain opioid binding sites located on the head of the spermatozoa, in addition to direct exposure to genomic materials following fertilization and beyond, cocaine may induce epigenetic strand breaks in DNA during fertilization and blastocyst formation.

Once impacted, the opioid effects on DNA risk becoming

transmitted and incorporated into the female gamete during fertilization and later zygotic development. Cocaine has been found to contribute to DNA strand breaks imposing epigenetic damage, and the early-stage immature developing zygote would likely be more susceptible prior to development of DNA genomic crossover repair mechanisms to genomic damage as occurs in more mature cells. Unless the cocaine-induced DNA damage can be repaired during early crossover events, the epigenetic dysfunctions may conceivably remain present in offspring during periods of embryonic and fetal development and beyond. Cocaine is a highly addictive opiate due to euphoric effects exerted via dopaminergic pathways in the limbic system of the central nervous system (CNS). The current prevalence of cocaine abuse in Western Civilization is approaching epidemic proportions, with over 20 million individuals over the age of 12 now subject to succumbing to its non-medical use and abuse. Cocaine effects dopaminergic neurologic processes, in addition to its often-dire effects on norepinephrine and other catecholamines by impeding neuronal catecholamine reuptake mechanisms following heavier use [1-8].

Embryonic development during prenatal growth and development is highly subject to nutritional and toxicological exposure, where derangements in the fetal-placental-maternal compartments may contribute to birth defects which may only become visibly apparent at birth in the newborn. Prenatal nutrition, in addition to the presence of noxious chemicals have long been known to contribute to the embryonic processes of fetal growth and development *in utero*. Their combined embryonic manifestations are typically often only fully discerned via ultrasound or clinically apparent upon parturition when physical abnormalities may become better visualized [9-13]. Neurological or psychological deficits, however, may not be readily apparent at birth, and may only become suspect later in the child's growth, neurological and psychological development. In Western Civilization, the incidence of birth defects has recently been estimated to impact 1 in 33 live births, often where the suspect causative agent is typically unknown with certainty [14]. The prenatal and early postnatal exposure may interfere with the normal development of multiple tissues depending on the magnitude, duration, and chronological time of insult to the developing fetus [12,13]. Developmental insults that occur during the period of embryogenesis of the nervous system typically occur early in the life of the embryo, while insults delivered after the embryologic organ systems have developed tend to impose their primary impacts during the last semester, when the final growth of the fetus and its organ systems occur [9,10,12,13]. Gestation in the rat comprises a mere 21 days, compared to an average of approximately 280 days in humans, thereby providing an opportunity to gain insight into developmental processes in a shorter timeframe [11,15].

When derivational nutrition insults are imposed during late gestation or postweaning growth, physical growth deficits typically occur in proportion to the duration and magnitude of the energy and nutrient insult [9-11]. In contrast to humans, where sensation of pain and external signals occurs by the third trimester, rat pups have little capacity for memory based on past learning experiences

at the time of weaning which typically occurs when the pups are about 3 weeks (21-22 days) of age [16]. In humans, prenatal and early postnatal experiences to sounds and sensations likely also contribute to memory and learning processes present at birth [16]. Thus, the earlier in embryogenesis and early growth an insult may occur, the greater the potential impact on epigenetic expression of later postweaning learning and developmental processes may occur [7,10-13,17].

Opiates exert profound psychological and medical effects in humans, including aberrant behavior, in addition to potentially dire cardiovascular effects following higher, prolonged exposure levels by impeding normal adrenergic neurotransmitter actions including neuronal neurohormone reuptake processes [7,8,18-20]. Cocaine has been found to produce its initial psychoactive and addictive effects primarily by acting on the brain's limbic system, where specific dopaminergic neurochemical regions that regulate pleasure and motivation originate. While short term or intermittent effects of cocaine are likely reversible in humans and other mammalian species, when repeated, chronic opiate exposure occurs, the short- and intermediate-term effects may cumulatively give rise to further negative effects that may persist for months or years, at which point they may become potentially irreversible barring long term behavioural modification therapies. Initially, the effects of cocaine exposure result in an accumulation of dopamine in synaptic clefts, where the nominal effects of dopamine may potentiate the euphoric effects. Dopamine imparts a stereospecific neurochemical reaction that can facilitate an enhanced euphoric sensation in addition to contributing to individuals drive to seek additional exposures to enable a repeat or further enhancement of the euphoric processes [22,23]. Following cocaine administration, neuronal concentrations of the silent factor Δ FosB in the limbic system become increased. This silent factor has been associated with addiction-like behaviors in mice. Similar to dopamine, Δ FosB functions as an intracellular, pace-setting chemical agent that facilitates dopaminergic neurochemically mediated actions [4,17]. However, Δ FosB remains in its original cellular domain where it functions as a silent genetic transcription factor in the expression of multiple genes [4,17,19]. While cocaine can impact effects on multiple transcription factors, the effects on Δ FosB are considered to be the most long-lasting and most prominent actions in generating the enhanced euphoric responses.

Within the limbic system, the nucleus accumbens (NAc), is likely the primary focal point of the acute and chronic dopaminergic activity, as direct dopaminergic NAc stimulation has been demonstrated to generate similar effects on pleasure and satisfaction as are typically observed during a cocaine high. Because of the long half-life of the Δ FosB factor, which can persist for up to two months, prolonged cocaine exposure may precipitate increasing concentrations of the silent Δ FosB factor, and further contribute to long-lasting changes to nerve cell structure, function and enhanced euphoria [17,19]. Although cocaine also inhibits the neuronal reuptake transporters for other neurotransmitter chemicals including norepinephrine and serotonin, its actions on the dopaminergic system are generally thought to be most important in the development of addiction-

related behaviors. In contrast, the later cumulative catecholamine effects that follow are linked to the cardiovascular dysregulation and related toxicity [22]. Because Cocaine also alters the neurochemical reuptake system for all catecholamines in addition to the immediate euphoric effects, when cocaine is present, dopamine molecules that otherwise would be picked up and reenter neuronal dopamine stores remain neurophysiologically active in the synaptic clefts, where they may accumulate and potentially overstimulate dopamine receptors [6,7].

As indicated above, once the ΔFosB is formed, it may last and remain active for 6 to 8 weeks before finally becoming biochemically inactivated [3,8]. Therefore, each new episode of cocaine abuse exacerbates the buildup of ΔFosB concentrations that have likely accumulated from previous episodes of cocaine exposure. Thus, if an individual continues to abuse cocaine on a frequent basis, the cellular concentrations of ΔFosB will likely remain chronically elevated for an indeterminate duration, and present a potentially chronic neuropathophysiologic and euphoric state. In addition, epidemiological studies indicate that approximately half of an individual's potential risk for addiction to cocaine or other opiates or addictive agents has a significant predisposing genetic origin, qualitatively similar in magnitude to that which impacts one's susceptibility to disorders such as Type 2 diabetes, breast cancer or other disorders with an epigenetic origin for expression [2,3,5]. Therefore, inappropriate prenatal exposure to cocaine and related agents likely presents an important risk for development of a substance abuse disorder later in the affected individual's lifespan. While specific genes that encode for ΔFosB or any of hundreds of other potential genetic modifiers that may be impacted by cocaine that could conceivably contribute to the epigenetic risks for addiction remain unclear.

One possibility for the heritable risks is that at least some of them are the same genes that are affected by cocaine exposure. For example, variations in the genes encoding ΔFosB or any of hundreds of other genes affected by cocaine could conceivably contribute to the genetic risk for addiction. It is easy to speculate that an individual with a gene that expresses high concentrations of ΔFosB could become more prone to addiction; such an individual would be analogous to the experimental mice that are engineered to produce more ΔFosB and consequently, became more prone to addiction [4]. It is also possible that other genes that were unaffected by cocaine exposure may be contributory to the addiction potential. Research to more fully determine the neurobiology of cocaine addiction is critical because the available treatments may not always resolve the addiction. A pathway toward definitive treatments, potential cures, as well as early diagnosis, intervention, and prevention may be ascertained via further exploration of the underlying neurobiological mechanisms as is apparent for numerous illnesses and disorders of mankind [2,18].

Glutamate receptors and receptors for the brain's natural opioid-like substances including κ opioid receptors are but two instances where deciphering the neurobiological basis had proven to be helpful in developmental therapeutics. Therapeutic approaches

that could modulate the magnitude and duration of ΔFosB overstimulation could indeed become an effective strategy in addressing the addiction potential.

Cocaine abuse is currently a major public health problem, with an estimated 20 million users worldwide, based on the most recent United Nations World Drug Report [2,14]. The leaves of the coca plant *Erythroxylon coca* have been used as a stimulant in South American culture for over 4000 years. The traditional use of cocaine, as typically obtained from the native coca leaves, has been in use for many centuries however by indigenous peoples of the Andean and other populations and cultures. In those civilizations, it has often been used to combat the effects of hunger, environmental and altitude extremes including symptoms of altitude sickness common to individuals habituating the high altitudes of the Altiplano [24-26].

Unlike the ongoing cocaine usage trends in current Western civilization as cited above, where purified cocaine preparations may be taken by inhaling microcrystalline or vaporized forms of the drug, the native populations commonly consumed the agent orally in the form of a tea, by chewing coca leaves, or by a sachet of coca leaves tucked in the cheek. Once cocaine has been absorbed via buccal mucosa, the opioid can bypass the initial hepatic first-pass phenomena to prolong the therapeutic or euphoric effects [25]. When consumed as such, it was generally deemed free of addictive or adverse acute psychotropic attributes. In the USA, cocaine is classed as a class II drug under the Controlled Substances Act, indicating that while it does have *bona fide* medical applications, continued use of cocaine and related opiates can become a risk factor for developing a high potential for abuse in large part due to the immediate and often persistent euphoric effects of repeated neurobiological exposure [22,23]. Among accepted applications include therapeutic use as a topical upper respiratory anesthetic and other uses related to analgesia. In 1961 the Single Convention on Narcotic Drugs supported the recreational use and non-medical distribution of cocaine and other opiates to be considered as a punishable crime. That classification was based at least in part due to its potential addictive and dependent properties in addition to cardiovascular and other pathophysiologic sequelae [22].

While recreational use of other, more potent opiates have long overshadowed cocaine in recent years, it remains on the contraband list, and the mechanisms of absorption, distribution and molecular actions are similar to those of other members of the opiate drug class. As recently as in 2019, cocaine was used as a recreational substance by an estimated 20 million people globally by adults aged 15 to 64 years in several Westernized countries including Australia, New Zealand, Western and Central Europe, and North and South America [22-26]. Caulkins et al. reported that cocaine had the capacity to bind to surface receptor domains of live spermatozoa during spermatogenesis [27]. Thus spermatozoa may be able to transport the cocaine moieties into the ova during fertilization, where they could potentially impact of chemical embryogenesis from the origination of zygote formation with as yet unknown consequences [27,28]. Therefore, the purpose of the

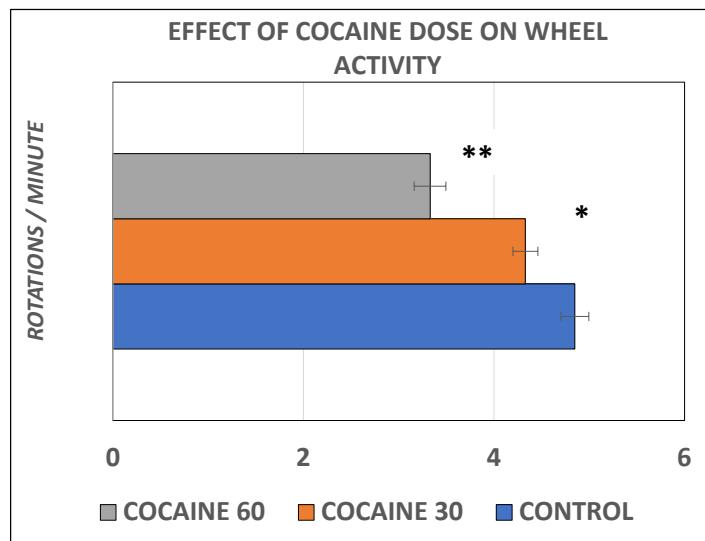
present investigation was to determine if prolonged male cocaine use throughout the duration of active spermatogenesis could influence the activities and behavioral characteristics of offspring of naive females conceived from the cocaine-exposed spermatids. The behavioral activities of offspring of naive females sired by addicted, cocaine treated males were subjected to activity and exploratory studies during their early postweaning development and demonstrated impairments in exploratory and activity patterns soon after weaning when assessed via both running wheel and open field exploratory activities, and prior to the onset of gestational and neonatal memory activities.

Materials and Methods

Animals: Groups of Congenic homozygous Lean male and female LA/N-tul/-cp rats ($n = 6$ rats/group) were obtained from the former Drexel University breeding colony by the author. Animals were maintained on commercially obtained Purina chow formula stock number 5054 and house water, both offered *ad libitum*, from birth and throughout the study. Housing consisted of Plexiglass enclosures, lined with 1 inch of fresh pine shavings, maintained at 22-24°C and 50% RH, on a reverse light cycle (Light 2000-0800 daily). Lean rats of this strain were selected due to their healthy longevity resulting from their derivation from an aging-prone NIH strain of Lister/Albany (LA/N) rats. Lean phenotype of the LA/N rats have been observed to attain ages of 3 to 4 years for males and females respectively when reared under standard laboratory conditions of diet and environment equivalent to the housing condition applied in this study [29,30].

Experimental: Groups of naive female rats of reproductive age (82 ± 3 days of age). The cocaine was obtained via a special research use permit from the NIH, Bethesda, MD, USA [27]. Male and female rats were separated at weaning. Upon adulthood and attaining sexual maturity, naive males were then subjected to daily administration of cocaine HCL of zero (Controls). 30 (Low Dose) or 60 (High Dose) mg cocaine/kg BW, subcutaneously, from 60 days of age until 150 ± 3 days of age, to encompass the complete duration of maturation of spermatozoa in the rat [19].

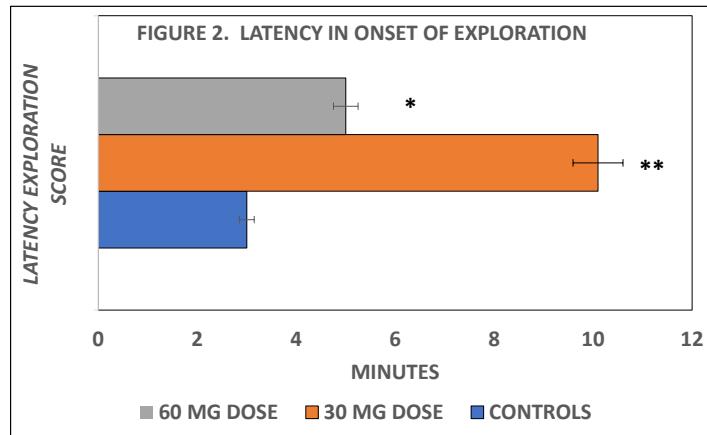
After 90 consecutive days of cocaine administration, male rats were mated with never exposed, naive virgin females aged 82 ± 3 days. Cocaine administration in the males was continued throughout the duration of the breeding period and until pregnancy was visibly confirmed, at which time they addicted males were removed from the breeding cages. A similar control group of unexposed virgin female rats of the same age were mated with additional never exposed males of the same age as above and maintained in separate cages. Upon weaning, when offspring were 21 days of age, they were removed from the dams and subjected to behavioral testing ($n = 8$ rats/group obtained from 4 or more dams). Exploratory activity was determined by exposure to a Calvin Hall Maze [31-34], and physical activity levels determined with a Stoelting Activity Wheel (Stoelting Co., Wood Dale IL USA) and recorded as the number of rotations completed per animal within a timed, 3-minute testing period. Data was analyzed by Students 't' test. Litter size was unaffected by the cocaine treatment ($n=8 \pm 1$ pup/

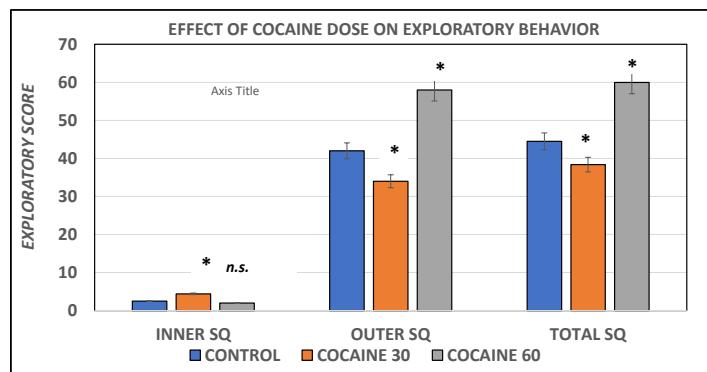

litter in both treatment and control groups ($p = \text{n.s.}$) [35]. Each test group had equal number of male and female pups, of similar body weights (40 ± 2 g BW) and were visually confirmed free of stigmata of early onset obesity, which was assured by utilizing breeding pairs that were confirmed homozygous lean offspring. In addition, offspring were tested only once, so as to preclude the chronologic opportunity for learned behavior following repeated trials, and to provide support for the contributions of nature vs. nurture in determining the outcome of offspring impacted by preconception opiate exposure.

Ethics and Study Approval

The study was approved by the Institutional Animal Care and Use Committee of USAT and was consistent with AVMA procedures for animal experimentation [36].

Results


The effects of male prefertilization cocaine exposure throughout the duration of spermatogenesis compared to naive, never exposed prepubertal pups are depicted in Figure 1, and indicate that the activity of pups born to addicted males were moderately less active than were pups born to naive, never cocaine exposed male breeders at the Low Dose treatment, and were impacted yet further with the high Dose regimen, where voluntary activity was reduced by an average of 30%.


Figure 1: Activity of offspring of cocaine treated sires. Data are mean \pm 1 SEM, $n=6-8$ rats/group. $p < 0.05$ control vs treated. Male cocaine was administered at a dosage of 30 mg./kg BW for 90 days prior to mating with confirmed naive females of a similar age. $p = < 0.05$.

The effect of dose related, preconception male cocaine use on delayed exploration activity of offspring in a Calvin Hall Maze is depicted in Figure 2 below and indicates that weanling offspring pups exposed to preconception both the Low and High Dose Cocaine exposure of the male sire exhibited a delayed latency in initiating exploratory activity, with the delay at 30 mg preconception dosage more prolonged than the higher dosage. Although the differences in the two dosage levels is not immediately clear, the cocaine measures on initiating exploratory activity were significant at the

$p = < 0.05$ level. Final exploratory activity compared to pups born to naive sire and dam matings in inner vs. outer squares of the maze are depicted in Figure 3 are indicated for each parameter dimension examined. Pups from cocaine treated males and naive virgin females were slower to initiate exploratory behavior (Figure 2) and exhibited less outer square and total exploratory behavior at the lower dose, indicative of a cocaine mediated effect upon fertilization (Figure 3).

Figure 2: Effect of preconception cocaine dose on exploratory latency in open field activity parameters of offspring of cocaine treated sires. Data are mean ± 1 SEM. N= 6-8 ats/Group. * = $P = < 0.05$; ** $p = < 0.01$.

Figure 3: Effect of preconception cocaine dose on exploratory open field activity parameters of offspring of cocaine treated sires. Data are mean ± 1 SEM. N= 6-8 ats/Group. P = < 0.05 inner squares, outer squares, and final total squares explored; n.s. = not significant, p = > 0.05; SQ = squares.

When offspring of High Dose Cocaine were evaluated, while the initial latency was less pronounced than with the Low Dose offspring, High Dose offspring exhibited greater outer square and total square exploration than controls or Low Dose offspring, suggestive of hyperactivity in the High Dose offspring. The apparent hyperactivity exhibited in the high dose group were of similar magnitude to the results reported by Zmitrovich et al. when early gestation female rats were administered an equivalent dose of cocaine (60 mg/kg BW, s.c.) during pregnancy [37]. Thus, male cocaine exposure during the duration of spermatogenesis resulted in measurable changes in locomotor and behavioral activity in offspring from naive females never directly exposed to the opiate

during gestational development of the offspring, and consistent with the onset of the epigenetic changes likely had an onset upon or soon after fertilization, and prior to expression or maturation of DNA repair mechanisms common to those which occur later in life.

Discussion

The epigenetic control of neuronal gene expression patterns have been reported to have emerged as contributors to underlying regulatory mechanisms for neuronal function, neuronal identity, neuronal plasticity, neurocellular regeneration and neuronal survival. Their impact on multiple aspects of behavioral health, in which short- to long-lasting adaptation is required to dynamically respond and process external stimuli in response in the presence of opiate-induced influences remain unclear and incompletely elucidated. The results of this study indicate that male cocaine use over a prolonged duration prior to conception and fertilization resulted in impaired behavior of offspring born from previously naive, virgin females of a similar age who had never been exposed to cocaine, analogs of cocaine, or other noxious substances. In addition, the cocaine induced effects appear to be dose related, with the greater dose studied demonstrating the greatest negative impact. While the molecular mechanism(s) could not be determined from the present study, the male exposure to cocaine occurred throughout and beyond the projected 54 day duration of spermatogenesis in rats, although minor variation in the duration of spermatogenesis may occur due to a variety of nutritional, strain, age, and other factors [28].

Thus, the duration of male cocaine exposure extended beyond the anticipated duration of spermatogenesis in this study. Rats have been observed to attain reproductive age soon after puberty, from approximately 42 days of age in our experience in this unique strain [38]. The head of the spermatozoa has been reported to bind to opioids that conceivably can be transmitted into the ova upon fertilization, thereby providing a simple explanation for inclusion of cocaine residuals into the fertilized zygote [27]. In a clinical study, opiate users were found to have decreased sperm counts resulting in modestly decreased fertility [37]. In that study, significant DNA fragmentation was reported compared to sperm obtained from healthy, cocaine-free volunteers [37]. Thus the emerging possibility of preconception DNA damage from the male gamete prior to conception may also have occurred in this study. In another study, Telese et al. noted that cocaine addicted rats had different neuronal levels of GABA signaling. GABA is an inhibitory neurochemical found in the amygdala, and which may have contributed to the greater exploratory activity with the higher dosages studied in addition to impaired neuronal reuptake of excitatory norepinephrine and other catechols also common in repeated opiate use [20].

In addition, cocaine binding to other cellular proteins following fertilization may also have occurred, and which ultimately may have impacted aspects of cellular energy metabolism in those studies. While the rat pups in this study were likely not addicted of their own accord *per se*, the multiple possibilities of male

gamete damage point to an alteration in intracellular epigenesis of neuronal properties occurring early in the life of the developing offspring when paired with naive ova. The extent to which such DNA damage may be repaired later in gestational or postnatal growth and development remains unclear from the present study, since later observations were not undertaken. What is clear however, is preconception cocaine exposure of the male gamete resulted in developmental behavior deficits in the offspring of virgin, naive females. In this study, all rats who gave birth were considered to be healthy young adults with no visible nutritional or developmental deficits, and the offspring while of apparent normal size, mass and dimensions, only demonstrated the developmental changes in physiological and exploratory behavior, suggestive of introduction of a non-nutritive process contributing to the executive and behavioral changes observed. The reported onset of memory-based learning in the rat occurs after 4 weeks of age, thus potential effects of prebirth memory influences were likely unaffected in this study [10,11,27].

A recent study also reported that female sex hormones impacted opioid use and activities in adult rats, but the epigenetic effects noted in the present study preceded the onset of gender maturation in the weanling rats, likely excluding gonadotropic hormonal influences as significant contributory factors [38]. Thus, since the only variable deemed important in the current study was the opiate exposure throughout the duration of spermatogenesis, the likelihood of dose related opiate contamination during zygote formation contributed to the behavioral aberrations in the weanling pups, prior to the known age when neural inputs into rat memory or sex hormone influences would normally have occurred [20,21,37,38].

Conclusions

The epigenetic control of neuronal gene expression patterns has emerged as an underlying regulatory mechanism for neuronal function, identity, and plasticity, in which short- to long-lasting memory, learning, and adaptation is required to dynamically respond and process external stimuli. The results of this study indicate that the 21-day old offspring of chronic, cocaine treated male rats mated to naive, virgin rats of a similar age, demonstrated impairments in exploratory and activity patterns as determined by exposure to a Calvin Hall Maze and a Stoelting activity wheel. Virtually all parameters examined were deemed significant at the $p = < 0.05$ level by statistical analysis. While the biological mechanism of the behavioral impact could not be determined, the effects were likely secondary to opiate transport into the ova at the time of fertilization, followed by molecular events during the initial formation of the zygote, where the parental DNAs of both parental haploid lines merge to form the diploid zygote, thereby enabling the incorporation of the male, cocaine inspired DNA strands to combine with naive intact DNA from non-exposed maternal origins.

Thus, should the chronic cocaine exposure damage of the paternal parental DNA remain compromised upon fertilization, the resulting immature zygote would likely inherit and retain the damaged DNA throughout early development of the developing

blastocyst and presumably become transmitted into the developing fetus. While the blastocyst is often considered to be protected from exterior maternal chemical insults prior to implantation, any potential DNA damage prior to implantation would likely already be present with each succeeding cell division and thus escape DNA repair mechanisms that occur later in fetal development. The onset of the development of neurogenesis in rats begins soon after fertilization and continues for approximately 2 weeks, while glial cells necessary for support functions continue to form after birth of the newborn pups.

During the early stages of neurogenesis, epigenetic errors due to chemical or nutritional injury present at fertilization may survive thereafter and as occurred in this study, likely impact the behavior of the offspring later in life. Similar results were reported by Zmitrovich et al. in pregnant females that were treated with cocaine during early to mid-gestation in the rat, implying that the damaging epigenetic effects during neuronal embryogenesis may originate from either paternal or maternal alleles during neuronal formation [26]. Regardless of the neurochemical mechanism, the effects of cocaine exposure on the male gamete prior to conception may bring about behavioral, executive and activity changes in the offspring prior to memory development, and with unknown long term significance during the early postweaning life of the affected offspring.

Acknowledgement

The author thanks the University of Science Arts and Technology for the resources to prepare this manuscript, and to Professor James Caulkins, Emeritus of Drexel University for inspiration and encouragement to conduct this study, and the animal care staff for assistance with animal husbandry.

References

1. Nestler, EJ. The Neurobiology of Cocaine Addiction. *Sci Pract Perspect.* 2005; 3: 4-10.
2. Goldstein A. Addiction: From Biology to Drug Policy. 2nd ed. Oxford: Oxford University Press. 2001.
3. Nestler EJ. Molecular basis of neural plasticity underlying addiction. *Nat Rev Neurosci.* 2001; 2: 119-128.
4. Nestler EJ, Barrot M. Self DW. ΔFosB: A molecular switch for addiction. *Proc Natl Acad Sci USA.* 2001; 98 :11042-11046.
5. Nestler EJ, Malenka RC. The addicted brain. *Sci Am.* 2004; 290: 78-85.
6. Hyman SE, Malenka RC. Addiction and the brain: The neurobiology of compulsion and its persistence. *Nat Rev Neurosci.* 2001; 2: 695-703.
7. Kalivas PW, McFarland K. Brain circuitry and the reinstatement of cocaine-seeking behavior. *Psychopharmacology (Berl).* 2003; 168: 44-56.
8. Koob GF, Sanna PP, Bloom FE, et al. Neuroscience of addiction. *Neuron.* 1998; 21: 467-476.
9. Bleker L, de Rooij S, Painter R, et al. Cohort profile: the Dutch famine birth cohort (DBFC)--a prospective birth cohort study in the Netherlands. *BMJ Open.* 2021; 11.

8. Fleming TP, Watkins AJ, Velazquez MA, et al. Origins of lifetime health around the time of conception: causes and consequences. *Lancet*. 2018; 391: 1842-1852.

9. Marshall N, Abrams B, Barbour L, et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. *Am J Obstet Gynecol*. 2021.

10. Wang C, Yang H, Chen S, et al. Early and late place cells during postnatal development of the hippocampus. *Nat Commun*. 2024; 15: 10075.

11. Farooq U, Dragoi G. Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies. *Nat Commun*. 2024; 15: 8417.

12. Wang C, Yang H, Chen S, et al. Early and late place cells during postnatal development of the hippocampus. *Nat Commun*. 2024; 15: 10075.

13. <https://www.cdc.gov/birth-defects/data-research/facts-stats/index.html>. November 19, 2024

14. Tulp OL, ES Horton. The effect of prolonged experimental protein malnutrition and of refeeding on growth and adipose tissue development in the rat. *J. Nutr*. 1981; 111: 1145-1156.

15. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and ΔFosB. *Nature Neuroscience*. 2003; 6: 1208-1215.

16. O'Brien CP. Research advances in the understanding and treatment of addiction. *Am J Addict*. 2003; 12: S36-S47.

17. McClung CA, Paula G Ulery, Linda I Perrotti, et al. ΔFosB: A molecular switch for long-term adaptation. *Brain Res Mol Brain Res*. 2004; 132: 146-154.

18. Telese F, Gamliel A, Skowronska-Krawczyk D, et al. Insights into the Epigenetics of Neuronal Gene Regulation. *Neuron*. 2013; 4: 606-623.

19. Zhou JL, de Guglielmo G, Ho AJ, et al. Author Correction: Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. *Nat Neurosci*. 2023; 26: 2035.

20. Brunton L, Knollmann B. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 14th Edition 14th Edition. McGraw-Hill Pubs. 2024.

21. Warner EA. Cocaine abuse. *Ann Intern Med*. 1993; 119: 226-235.

22. Karch SB. The history of cocaine toxicity. *Hum Pathology*. 1989; 20: 1037-1039.

23. Novák M, Salemk CA, Khan I, et al. Biological activity of the alkaloids of Erythroxylum coca and Erythroxylum novogranatense. *J Ethnopharmacol*. 1984; 10: 261-274.

24. Plowman T. The identification of coca (Erythroxylum species): 1860-1910. *Botanical Journal of the Linnean Society*. 1982; 84: 329-353.

25. Calkins J, Winfrey A, Peisong H, et al. Effects of male cocaine use on behavioral attributes of F1 offspring in rats. *FASEB J*. 1994; 8: a631.

26. Matsumura T, Katagiri K, Yao T, et al. Generation of rat offspring using spermatids produced through in vitro Stanford SC (March 2007). The Open Field Test: reinventing the wheel. *J Psychopharmacol*. 21: 134-5.

27. Tulp OL. Impact of Aging and Obesity on Insulin Parameters, T4/T3 Ratios, Metabolic Rates, Sirtuins and Longevity in Congenic LA/Ntul/-cp (Corpulent) Rats. *Medical Science: Trends and Innovations*. 2025; 5: 12-38.

28. Robinson TE, Berridge KC. Incentive-sensitization and addiction. *Addiction*. 2001; 96: 103-114.

29. Volkow ND, Fowler JS, Wang GJ, et al. The addicted human brain: Insights from imaging studies. *Journal of Clinical Investigation*. 2003; 111: 1444-1451.

30. Denenberg VH. "Open-field behavior in the rat: what does it mean?". *Annals of the New York Academy of Sciences*. 1969; 159: 852-9.

31. Hall CS, Ballachey EL. A study of the rat's behavior in a field: a contribution to method in comparative psychology. *University of California Publications in Psychology*. 1932; 6: 1-12.

32. Stanford SC. "The Open Field Test: reinventing the wheel". *J Psychopharmacol*. 2007; 21: 134-5.

33. Nie N, Hull CH, Jenkins K, et al. Statistical Package for the Social Sciences, 2nd Ed., NY: McGraw Hill Pubs.

34. AVMA Use of Animals in Research, Testing, and Education Publication: *Journal of Veterinary Medical Education*. 37; 1.

35. Zmitrovich AC, Hutchins DE, Dow-Edwards, et al. Effects of prenatal exposure to cocaine on the rest-activity cycle of the preweanling rat. *Pharmacol Biochem Behav*. 1992; 43: 1059-1064.

36. Tulp, OL. Characteristics of thermogenesis, obesity, and longevity in the LA/N -cp rat. *ILAR News*. 1990; 32: 32-39.

37. Bradford S. Female sex hormones reduced fentanyl use in rats. *The Scientist*. 2025: 1-6.