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ABSTRACT

We investigated the temperature dependence of the magnetic susceptibility and that of 1/(T,T) where 1/T, was
the nuclear magnetic relaxation rate in YCo, theoretically. The self-consistent renormalization theory of spin
fuctuations (SCR theory) was used. The SCR theory includes the electronic correlations beyond the random phase
approximation. The Landau expansion of the magnetic free energy was used up to 6th order of the magnetization
because of the metamagnetism in YCo,. We found that the temperature dependence of the magnetic susceptibility
and that of 1/(T,T) were consistent with the experimental data qualitatively.
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Introduction

Many researchers have been interested in nearly ferromagnetic
metals [1-13] Yoshimura et al. investigated the temperature
dependence of 1AT,T) where 1/T, is the nuclear magnetic
relaxation rate in YCo, [14,15]. They show that YCo, is the nearly
ferromagnetic metal. They find that YCo, has the anomaly of 1/
(T,T) corresponding to the maximum of the magnetic susceptibility.

Konno explains the minimum of the inverse of the magnetic
susceptibility in nearly ferromagnetic metals by using the self-
consistent renormalization theory of spin fluctuations (the SCR
theory) that includes the electronic correlations beyond the random
phase approximation [16]. We apply this theory to the magnetic
properties in YCo,

Throughout this paper, we use units of the energy, such that # =
1, k,= 1, and gu,= 1 where g is the g-factor of the conduction
electron, unless explicitly stated. We assume that the c-axis is the
easy axis of the magnetization.

This paper is organized as follows: the formulation will be
supplied in section 2. The results will be provided in section 3.
The conclusions will be given in section 4.

Formulation
Let’s begin with the following equation of the inverse of the
magnetic susceptibility [12,13,16]

I I-a 5., 35 "
N 3F1SL(T)+ 9 G1SL(T) (1)

where F, and G, are the coefficients of the Landau expansion of the
magnetic free energy. (1—-a)'is the Stoner’s enhancement factor. y,
is the non-interacting magnetic susceptibility. S *(T) is the square
of the local spin amplitude.

In order to consider S*7) self-consistently, the following
dynamical susceptibility is introduced.

Xo(q,w)
1— Ixo(g,w) — A+ BA2x0(q, ) )

X(q,w) =

where [ is the on-site Coulomb coupling. From Eq.(1), 4 is
determined by the limit

Nano Tech Appl, 2025

Volume 8 | Issue 2 | 1 of 3



g—0andw — 0

A= gXOFl'S%(T) ®
BX = 2GuSH(T) @
From Egs.(3) and (4),
G,

= o
A is determined by the following equation.
B2 =i+ 1—a=y/y (6)
y L= VI =48 —a—xo/x) (7

26x0

A represents the electronic correlation beyond the random phase
approximation. We take the minus sign because S,*(0) = 0 and 1
= 0 when 7 = OK. By using Moriya’s expression [11] based on
the single band Hubbard model, the non-interacting dynamical
susceptibility y,(¢,®) is obtained as follows:

@®)

Xo(q:w) = x0(0,0)(1 — Ag® + iC%)

q and w are the magnitude of the wave vector and the frequency,
respectively. The square of the local spin amplitude S,*(7) is

SHD) = 923 [ gt ©)
From Eq.(8), Imy(q,) is
o (q.w) = T w
ImX q,w) = 27TA u% +w2 (10)
With
u, = 2aT,(1/2yT y(0)) + (g/q,)), (11)
Aq B?
TA=——
2
I'=A4/C,

T,=Tq_B*/2r)
Y= 0= P A

g, is the magnitude of the zone boundary wave vector. From
Eq.(9), S (D) is

s2(1) = 2o / Aoz (1w~ 5~ Y(w)

12
VTa (12)

where w(u) is the digamma function.

1

~ 2aTax(0) (13)

t=T/T,u=x(x+ y/y)L. (14)

where y is the inverse of the reduced magnetic susceptibility.
From Egs.(1) and (12), the equations of the inverse of the reduced
magnetic susceptibility are obtained.

y=1yo— 1Ay, 1) + 1A%y, 1)

A (15)
A = [ et 1/(20) - wiw)
where
11—«
= 16
Yo 204TAX07 (16)
15FT¢
h = 2@711/2‘07 (17)
315G, 17
- 200 w
A
In Eq.(7), we rewrite 4 by y and y,.
N = 1_\/1_45X0(1_0¢)(1_y/yo) (19)

20x0
%,(0) is the non-interacting magnetic susceptibility at the zero
temperature.

We proceed to the nuclear magnetic relaxation rate. The nuclear
magnetic relaxation rate 1/7,[7,8] is

1 1 Imy "+ (q, w
_:7NT_Z|A|2 X (q O)

20
Tl NO - q Wo ( )

where y, is the gyro-magnetic ratio, 4, is the Fourier ¢ component
of the hyperfine coupling, e, is the nuclear magnetic resonance
frequency, and N, is the number of magnetic ions. When ¢
dependence of A, is neglected and w,— 0, we obtain

sy =1/(1+ (y/7)))

The results will be provided in the next section.

13
= = -t/ (VTa) A}

21
T1 41 ( )

Results

In this section, the numerical results are provided by using the
formulation in the previous section. According to Ref. [16], we
estimate the maximum of the magnetic susceptibility that is about
250K. Figure 1 shows the temperature dependence of the magnetic
susceptibility with spin fluctuation parameters of Y(Co _  Al),
at x = 0.13 [4]. From Figurel, the maximum is around 250K. In
elevated temperatures, the magnetic susceptibility obeys the Curie-
Weiss law. Figure 2 shows the temperature dependence of the spin
fluctuations 4. 1 is the maximum corresponding to the maximaum
of the magnetic susceptibility.
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Figure 1: The temperature dependence of the reduced magnetic
susceptibility y when a = 0.75, f = 120.17, x, = 0.0003266[1/K],
¥,=0.03747, y =1.4952,y,=70, T, = 1920K, T,= 12300K.
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Figure 2: The temperature dependence of the A4 with the same parameter
value as Figure 1.
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Figure 3: The temperature dependence of the 1/7,7) with the same
parameter value as Figure 1.

Figure 3 shows the temperature dependence of 1A7,7). The
maximum is around 250K corresponding to the maximum of the
magnetic susceptibility. These behaviors are good agreements with
the experimental data qualitatively.

Conclusions

We have studied the maximum of the magnetic susceptibility
and 1/AT,T) where 1/T, is the nuclear magnetic relaxation rate in
YCo, by using SCR theory that includes the electronic correlation
beyond the random phase approximation. We have found that they
are good agreements with the experimental data qualitatively.
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