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Introduction
Many researchers have been interested in nearly ferromagnetic 
metals [1-13] Yoshimura et al. investigated the temperature 
dependence of 1/(T1T) where 1/T1 is the nuclear magnetic 
relaxation rate in YCo2 [14,15]. They show that YCo2 is the nearly 
ferromagnetic metal. They find that YCo2 has the anomaly of 1/
(T1T) corresponding to the maximum of the magnetic susceptibility.

Konno explains the minimum of the inverse of the magnetic 
susceptibility in nearly ferromagnetic metals by using the self-
consistent renormalization theory of spin fluctuations (the SCR 
theory) that includes the electronic correlations beyond the random 
phase approximation [16]. We apply this theory to the magnetic 
properties in YCo2

Throughout this paper, we use units of the energy, such that ℏ = 
1, kB = 1, and gµB = 1 where g is the g-factor of the conduction 
electron, unless explicitly stated. We assume that the c-axis is the 
easy axis of the magnetization.

This paper is organized as follows: the formulation will be 
supplied in section 2. The results will be provided in section 3. 
The conclusions will be given in section 4.

Formulation
Let’s begin with the following equation of the inverse of the 
magnetic susceptibility [12,13,16]
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Abstract 
We investigated the temperature dependence of the magnetic susceptibility and that of 1/(T1T) where 1/T1 was the 
nuclear magnetic relaxation rate in YCo2 theoretically. The self-consistent renormalization theory of spin fluctuations 
(SCR theory) was used. The SCR theory includes the electronic correlations beyond the random phase approximation. 
The Landau expansion of the magnetic free energy was used up to 6th order of the magnetization because of the 
metamagnetism in YCo2. We found that the temperature dependence of the magnetic susceptibility and that of 1/(T1T) 
were consistent with the experimental data qualitatively. 
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represents the electronic correlation beyond the random phase approximation. We take the minus sign because SL
2(0) 

= 0 and = 0 when T = 0K. By using Moriya’s expression [11] based on the single band Hubbard model, the non-
interacting dynamical susceptibility 0( ) is obtained as follows: 
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q and are the magnitude of the wave vector and the frequency, respectively. The square of the local spin amplitude 
SL
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qB is the magnitude of the zone boundary wave vector. From Eq.(9), SL

2(T) is 
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where I is the on-site Coulomb coupling. From Eq.(1), λ is 
determined by the limit
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ABSTRACT
We investigated the temperature dependence of the magnetic susceptibility and that of 1/(T1T) where 1/T1 was 
the nuclear magnetic relaxation rate in YCo2 theoretically. The self-consistent renormalization theory of spin 
fluctuations (SCR theory) was used. The SCR theory includes the electronic correlations beyond the random phase 
approximation. The Landau expansion of the magnetic free energy was used up to 6th order of the magnetization 
because of the metamagnetism in YCo2. We found that the temperature dependence of the magnetic susceptibility 
and that of 1/(T1T) were consistent with the experimental data qualitatively.
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q → 0 and ω → 0
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From Eqs.(3) and (4),
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λ is determined by the following equation.

βχ0λ
2 − λ + 1 − α = χ0/χ	                                                                       (6)

	                                                                                (7)
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qB is the magnitude of the zone boundary wave vector. From 
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where ψ(u) is the digamma function.
where (u) is the digamma function. 
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In Eq.(7), we rewrite by y and y0. 
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0(0) is the non-interacting magnetic susceptibility at the zero temperature. 
 
  We proceed to the nuclear magnetic relaxation rate. The nuclear magnetic relaxation rate 1/T1 [7,8] is 
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where N is the gyro-magnetic ratio, Aq is the Fourier q component of the hyperfine coupling, 0 is the nuclear magnetic 
resonance frequency, and N0 is the number of magnetic ions. When q dependence of Aq is neglected and 0 0, we 
obtain 
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The results will be provided in the next section. 
 
Results 
In this section, the numerical results are provided by using the formulation in the previous section. According to Ref. 
[16], we estimate the maximum of the magnetic susceptibility that is about 250K. Figure 1 shows the temperature 
dependence of the magnetic susceptibility with spin fluctuation parameters of Y(Co1 xAlx)2 at x = 0.13 [4]. From 
Figure1, the maximum is around 250K. In elevated temperatures, the magnetic susceptibility obeys the Curie-Weiss 
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Results
In this section, the numerical results are provided by using the 
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estimate the maximum of the magnetic susceptibility that is about 
250K. Figure 1 shows the temperature dependence of the magnetic 
susceptibility with spin fluctuation parameters of Y(Co1− x Alx)2 
at x = 0.13 [4]. From Figure1, the maximum is around 250K. In 
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Weiss law. Figure 2 shows the temperature dependence of the spin 
fluctuations λ. λ is the maximum corresponding to the maximaum 
of the magnetic susceptibility.
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Figure 1: The temperature dependence of the reduced magnetic 
susceptibility χ when α = 0.75, β = 120.17, χ0 = 0.0003266[1/K], 
y0=0.03747, y1=1.4952,y2=70, T0 = 1920K, TA = 12300K.

Figure 2: The temperature dependence of the λ with the same parameter 
value as Figure 1.

Figure 3: The temperature dependence of the 1/(T1T) with the same 
parameter value as Figure 1.

Figure 3 shows the temperature dependence of 1/(T1T). The 
maximum is around 250K corresponding to the maximum of the 
magnetic susceptibility. These behaviors are good agreements with 
the experimental data qualitatively.

Conclusions
We have studied the maximum of the magnetic susceptibility 
and 1/(T1T) where 1/T1 is the nuclear magnetic relaxation rate in 
YCo2 by using SCR theory that includes the electronic correlation 
beyond the random phase approximation. We have found that they 
are good agreements with the experimental data qualitatively.
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